Coupling between zooplankton spatial distribution and physical processes off Washington and Oregon

Hongsheng Bi¹, William T. Peterson², Jesse Lamb¹, Cheryl Morgan¹

1.CIMRS, Oregon State University - HSMC, Newport, OR 97365

2. Fisheries Newport Station, Newport, OR 97365

Cross the Pacific

Introduction: winds and current structure

Winter

- ■Winds from the south
- Downwelling
- Poleward-flowing Davidson Current
- Subtropical/southern species transported northward & onshore

Summer

- Strong winds from the North
- Coastal upwelling
- Northern species transported southward

Winter:

Summer:

Phase shifts are tracked by the Pacific Decadal Oscillation (PDO): negative = cool; positive = warm.

Circulation off the Pacific Northwest

- CC is primarily along the shelf break and offshore
- Currents over the shelf dominated by local winds. Winds reverse from northward to southward in spring.
- Subarctic intrusion

Sampling and methods

- •Field samples: June 1998 – present
- ZooplanktonVertical net
- Temperature and salinity
- Sea surface height

 Altimeter data
- Sea surface temperature

 AVHRR

Objectives

- To understand how zooplankton spatial distribution was influenced by different physical processes
 - Upwelling: cross shelf (Zonal)
 - Pacific decadal oscillation: North-south (Latitudinal)
 - Warm oceanic copepods: Calanus pacificus
 - Cold neritic copepods: Calanus marshallae

Sea level anomalies from the Altimeter

Sea level anomalies: non-seasonal Predominantly southward 99-02, 08

Sea surface temperature anomalies

June 1998 to 2007 Ordination

Offshore

Onshore

Cold Years

Latitudinal distribution: warm species

Latitudinal distribution: cold species

Zonal distribution: warm species

Zonal distribution: cold species

Conclusions

- Interannual variation in both warm oceanic and cold neritic copepods were consistent with offshore SLA and SST patterns
- Zonal patterns were clear for both types of copepods
- Latitudinal patterns were not clear for cold neritic copepods
- In cold years (1999-2002, 2006- 2008), warm oceanic copepods were more abundant in south

Acknowledgements

- Funding agency
 - NASA
 - Bonneville Power Administration
 - GLOBEC synthesis NSF/NOAA
- Satellite data:
 - AVISO
 - NASA JPL
- Comments from Dr. Ted Strub and Rosemary Morrow
- Field data collection team and database management team

Mean abundance

