The Effect of Seasonal Sea Ice Cover on the Structure of the Eastern Bering Sea Pelagic Food Web

George L. Hunt, Jr. University of Washington

Jeffery M. Napp NOAA Alaska Fisheries Science Center

Kenneth O. Coyle University of Alaska, Fairbanks

Phyllis J. Stabeno NOAA Pacific Marine Environmental Laboratory

The Bering Sea

Issues to Discuss

- Sea ice cover is changing
- Timing of ice retreat affects bloom timing
- Timing of bloom affects zooplankton
- Zooplankton species requirements differ
- Events in spring set up summer conditions
- Role of prey availability vs. predation for pollock recruitment

Ice Coverage on the Southeast Bering Sea Shelf, 1972-2006

Courtesy of Jim Overland, PMEL

Interannual and seasonal variation in water temperature and fluorescence

Mooring M2, middle shelf, 70 m depth

Fluorescence at 11-13m (yellow line)

Figures courtesy of: Phyllis Stabeno NOAA-PMEL Seattle, WA

Timing of Ice Retreat and Type of Spring Bloom

Bloom Bloom Occurs at Occurs in Ice Edge Open Water

11

1?

Ice Gone by Mid-March Ice remains after late March

Variation in Copepods (# m⁻³) with Temperature, SE. Bering Sea

Variable	Are a	Year		
THE TARA	1997	1998	1999	99 Change
Onset of Bloom	Mid-	Early	Late	State State
	April	May	March	
Mean temp. °C	3.76	3.45	0.32	-3.29 °C
Acartia spp.	961	711	64	-92%
Pseudocalanus	1168	893	240	-77%
Calanus marshallae	34	72	3.7	-97%
Calanoid nauplii	616	626	322	-48%
Oithona similis	99	219	28	-82%

Ice, Wind, Bloom and Copepods

Widespread Plankton Decline & Recovery

J. Napp / N. Shiga

Copepod Abundance

Courtesy of Napp and Shiga

Coyle et al., 2008

Middle Shelf Copepods (No. m⁻³) Summer 1999 vs. 2004

Data Type	1999	2004	Ρ
(from Coyle et al. 2008)	(Cold)	(Warm)	value
Oithona similis	348	1633	0.000
Pseudocalanus spp.	404	1211	0.000
Acartia spp.	277	507	0.264
Centropagus	0	(2.96)-03	0.177
abdominalis	Carl Line		
Calanus marshallae	44	(8.13)-04	0.000
Calanoid nauplii	161	2.69	0.015

Ice, Wind, Bloom and Copepods

Stratification at M2, 1999 vs. 2004

Data Type (From Coyle et al. 2008)	1999 (Cold)	2004 (Warm)	P value
Temperature, (°C) Upper Mixed Layer	7.0	12.6	0.000
Temperature, (°C) Bottom Mixed layer	2.0	3.2	0.000
Salinity, (PSU) Upper Mixed Layer	31.6	31.8	0.000
Salinity, (PSU) Bottom Mixed Layer	31.7	32.0	0.000
Stability Parameter (J m ⁻³)	34.9	98.4	0.000

Water Column Stability August-September 2004

Parameter calculated by Ken Coyle from BASIS Data. Figure from Coyle et al., 2008

Age-0 Pollock Mass and Diets August 1999-2004

Mass August 2004 M2 & Pribilofs

Mass August 1999 at M2

Collection Site

Diets August 2004 M2 & Pribilofs

Diets August 1999 at M2

Walleye Pollock Age-class Strength

Numbers of age-1 pollock, in millions of individuals

Courtesy lanelli et al. 2007 SAFE

Oscillating Control Hypothesis

Beginning of Warm Regime (Bottom-L

(Bottom-Up Regulation)

Warm Regime

Zooplankton

(Top-Down Regulation)

Beginning of Cold Regime

Larval Survival

(Both Top-Down and Bottom-Up Regulation)

Abundance of Piscivorous Adult Fish

Juvenile Recruits Hunt et al., 2002

Prey Switching Hypothesis (Cooney et al. 2001)

Warm year with late bloom

Cold year with early bloom

Mesozooplankton Juveniles

Year 2 and older

Recruits

Issues Discussed

- Changing sea ice cover
- Early ice retreat > late bloom in warm water
- Timing of bloom affects zooplankton
 - Large Calanus marshallae needs early bloom
 - Small shelf species do best with late bloom
 - Thus timing of bloom affects size of zooplankton available
- Events in spring set up summer conditions including stratification and types and amount of prey available
- Lack of large zooplankton affects survival of both age-0 and age-1 pollock
 - Hypothesize if no large zooplankton on shelf in summer, then increased cannibalism (and predation) of age-0 and age-1 pollock
 - Hypothesize lack of large zooplankton in late summer may affect over-winter survival of juvenile pollock (Mueter and Coyle talk to follow)