Planktonic microbial food web dynamics in Hong Kong coastal waters

Hongbin Liu, Bingzhang Chen, Mianrun Chen, Xihan Chen, Loklun Shek, Hongmei Jing and Thomas Wong microbial food web

Classic food chain

Simplified microbial food web

Mesozooplankton

Large-size phytoplankton

Microzooplankton

Nano-size phytoplankton Nanoflagellates

Picoeukaryotes

Bacteria

Additional micro- complexities

Monthly total rainfall in Hong Kong from March 2007 to February 2008

I Comment

Suspended Sediment Concentration (tracer for the plume)

Objectives

- To study microbial community structure and the dynamics of the microbial food web in Hong Kong waters.
- To study micro- and mesozooplankton grazing, as well as viral lysis as possible controlling factors of algal blooms.

Parameters Measured

Hydrograph

- Nutrients, POC, PON, DOC, DON
- Meso-, micro-, nano- and picoplankton
- Size-fractionated chlorophyll, pigments
- Phytoplankton growth and mortality (micro- and mesozooplankton grazing)
- Viral dynamics (abundance, production, decay) and viral-induced mortality
- Molecular approaches and stable isotopes

Temperature

Salinity

Nutrients

Size-fractionated

Chl a

Average percentage of Chl a in each size fraction (mean±SD).

Size fractionated Chl a at PM7

Pico	0.14±0.09	0.25±0.12
Nano	0.27±0.19	0.27±0.12
Micro	0.59±0.24	0.49±0.21
	NM3	PM7

Size fractionated initial Chl a at NM3

Abundance of Synechococcus and picoeukaryotes

Phytoplankton growth rates and microzooplankton grazing rates (based on Chl *a*)

۲

A) PM7

Biomass of ciliates and dinoflagellates

Nutrient limitation index (μ_0/μ_n)

Scatter plots of phytoplankton growth rates (μ_0) and microzooplankton grazing rates (*m*). The Pearson correlation between the two variables is significantly positive (r = 0.56, p < 0.01, n = 26).

Scatter plots of microzooplankton grazing rates (*m*) derived from dilution experiments versus microzooplankton biomass (including both ciliates and dinoflagellates).

Average growth rates of phytoplankton and grazing rates of microzooplankton

	μ ₀		m		m/µ ₀	
Str	moon + sd	CV	moon ± sd	CV	Moon*	Madian
5111.			mean ± su		Ivicali [*]	wieulali
PM7	0.89±0.54	60%	0.54±0.60	120%	0.59	0.56
NM3	1.34±0.73	55%	0.78±0.41	53%	0.54	0.58

* Excluding data negative and larger than 1.2

Rate estimates for picophytoplankton

Phytoplankton growth and microzooplankton grazing rates are both faster for smaller than larger cells

Mesozooplankton dryweight at two sites

of major grazers of phytoplankton among metazoan mesozooplankton

Mesozooplankton clearance rate on different size-fractions

and an

The calles of the calles

In situ mesozooplankton grazing rates (d⁻¹)

Percentage of phytoplankton standing stock consumed by mesozooplankton

Bacterial and viral abundance

bacterial growth rate and viral induced bacterial mortality rate

Average estimates for the percentage of different loss factors versus growth rate for phytoplankton

	m/µ	M/ µ	h/µ	s/µ	v/µ
PM7	0.59	0.05	<0.05?	?	?
NM3	0 54	0.04	0 12*	2	2

µ: phytoplankton growth rate
m: microzooplankton grazing
M: mesozooplankton grazing
h: horizontal advection
s: sinking
v: virus lysis
*Estimated from Yin et al. (2000)

NM3-18S-DGGE enlarged picture

Sample loading order (from left to right): ladder, initial (0.22~3um), control A, B, treatment1, 2, 3; initial (>3um), control A, B, treatment 1, 2, 3.

Grazing-NM3 grazing-NM3-3-CA grazing-NM3-3-CB grazing-NM3-3-T1 grazing-NM3-3-T2 grazing-NM3-3-T3 grazing-NM3-3-initial grazing-NM3-0.22-t1 grazing-NM3-0.22-T2 grazing-NM3-0.22-CA grazing-NM3-0.22-CB grazing-NM3-0.22-Initial grazing-NM3-0.22-t3

NM3-18S-DGGE enlarged picture

Sample loading order (from left to right): ladder, initial (0.22~3um), control A, B, treatment1, 2, 3; initial (>3um), control A, B, treatment 1, 2, 3.

Sequence analysis

- Increased after treatment
- Introduced during zooplankton addition

Code	Closest Identity	Phylogenetic Group
NM3-B01	Uncultured eukaryotic picoplankton isolate DGGE gel band X3	Stramenopiles
NM3-B32	Uncultured copepod clone AT2-18	Copepod
NM3-B33	Neocalanus cristatus clone A line	Calanoid copepod
NM3-B34	Neocalanus cristatus clone Nihon	Calanoid copepod
NM3-B35	Asterocheridae sp. 1 New Caledonia-RJH-2004	Copepod
NM3-B36	Scambicornus sp. New Caledonia-RJH-2004	Copepod

$NM3 > 3\mu m$

- Decreased after treatment
- Grazed by mesozooplankton

Code	Closest Identity	Phylogenetic Group
NM3-B17	Uncultured stramenopile clone GHB34.11	Stramenopiles; Bacillariophyta
NM3-B18	Woloszynskia pascheri strain CCAC0075	Alveolata; Dinophyceae
NM3-B19	Uncultured eukaryotic picoplankton clone PG5.8	Stramenopiles; Bacillariophyta
NM3-B22	Uncultured marine eukaryote clone SIF_4H10	Alveolata; Dinophyceae
NM3-B23	Uncultured marine eukaryote clone NA2_2G6	Alveolata; Dinophyceae
NM3-B24	Uncultured marine eukaryote clone js45	Alveolata; Dinophyceae
NM3-B25	Gyrodinium fusiforme	Alveolata; Dinophyceae
NM3-B27	Uncultured eukaryote clone SCM28C129	Alveolata; Dinophyceae
NM3-B29	Uncultured marine alveolate clone PROSOPE99.CTD28.50m.DGGE.250803_30	Alveolate
NM3-B30	Uncultured eukaryote clone A01N10	Alveolate

- Increased after treatment
- Enriched when zooplankton were introduced

Code	Closest Identity	Phylogenetic Group
NM3-B10	Thalassomyces fagei	Alveolate
NM3-B39	Uncultured eukaryotic picoplankton clone XMCC5	Stramenopiles
NM3-B41	Uncultured eukaryote clone 18BR21	Unknown
NM3-B42	Uncultured eukaryote clone 18BR20	Unknown

Fig.1 Changes of species group composition in each of the treatments at NM3 station (eutrophic).I: Initial experiment with no incubationC: Control experiments with 24 hr incubation

T: Treatments with copepod addition and 24 hr incubation

Summaries

- Large phytoplankton dominates the biomass at the western site,
 while pico-phytoplankton are more important at the eastern site.
- Nutrient limitation of phytoplankton growth is common at the eastern site, but not at the western site.
 - Microzooplankton consumes a great proportion of primary
 production at both sites, while the impact of mesozooplankton
 grazing is very small.
 - Viral mediated bacterial mortality is significant, but viral lysis of phytoplankton is likely small.

THANK YOU

Means ± standard errors

	Chl <i>a</i> (µg/L)	μ (d⁻¹)	%PP grazed
Oceanic	0.6 ± 0.03	0.59 ± 0.02	70 ± 1.5
Coastal	3.1 ± 0.5	0.67 ± 0.05	60 ± 3.3
Estuarine	13.0 ± 1.8	0.97 ± 0.07	60 ± 2.7
Tropical	1.0 ± 0.2	0.72 ± 0.02	75 ± 2.0
Temperate	5.2 ± 0.7	0.69 ± 0.03	61 ± 1.8
Polar	0.6 ± 0.1	0.44 ± 0.05	59 ± 3.3

Composition changes by mesozooplankton grazing PM7

HPLC pigment analysis

Mesozooplankton clearance rates and ingestion rates PM7

NM3

Picoeukaryotes diversity as shown in denaturing gradient gel electrophoresis (DGGE) gel patterns of PCR amplified 18S rRNA genes

DGGE cluster analysis MVSPW: UPGMA method

Species richness (no. of bands) NM3 Feb: 15 NM3 May: 20

NM3 Aug: 23

NM3 Nov: 24

Species richness (no. of bands) PM7 Feb: 18 PM7 May: 16 PM7 Aug: 21 PM7 Nov: 23

Temporal variation

Month/Station

- Generally higher diversity in NM3 summer and higher diversity in PM7 winter
- Novel alveolate groups presisted throughout the year in both station
- Dinoflagellates were found primarily during late winter and early summer in NM3
- Novel stramenopiles were found primarily during winter time in both station
- Chlorophytes and Silicoflagellates / Diatoms were present during summer time in NM3 / PM7 station
- Chlorophytes / Prasinophytes (tiny chlorophytes) were found in NM3 / PM7 respectively

