Science, Service, Stewardship

Estimating Biomass and Management Parameters from Length Composition Data: A Stock Assessment Method for Data Deficient Situations

Bernard A. Megrey and Chang Ik Zhang

PICES Annual Meeting Dalian PR China Friday, October 31, 2008 NOAA FISHERIES SERVICE

Outline

- Motivation
- Model description
- Compare a numbers-based length cohort analysis (Jones LCA, 1979) method to a new biomass-based method that explicitly incorporates growth.
- Investigate the performance of the biomassbased LCA and the more traditional numbersbased LCA on simulated data.
- Demonstrate management applications.
- Test performance by applying the model to actual data on eastern Bering Sea northern rock sole

Motivation

- Long time series of catch are not always available.
- Small fish populations are not usually assessed with research surveys.
- Often catch is recorded in weight and by size groups, but no age data are collected.
- FAO (2005) reports that 143 exploited stocks (20%) are not assessed due to lack of available information.
- These situations are exactly those that describe small-scale or artisanal fisheries.
- Stocks still need active management to maintain sustainability.

Objective

- Describe a biomass-based cohort analysis method based on length composition data (LCA) that can be used in small-scale fisheries situations.
- Develop model extensions to allow the calculation of relevant management metrics using only length composition data.
- Apply to data of an exploited and managed stock (i.e. assessments and research surveys performed)

Typical LCA Calculations

Step	Number-based LCA	Biomass-based LCA
1	$CN = \frac{CW}{\overline{W}}$	$C_l^W = CW p_l^W$
2	$C_l^N = CN p_l^N$	
3	$\hat{N}_l = fxn(C_l^N, M, K, L_{\infty})$	$\hat{B}_l = fxn(C_l^W, M, K, L_{\infty}, W_l)$
4	$\hat{B}_l = N_l W_l$	

CN – catch in number CW – catch in weight \overline{W} – average weight N_l – number at length B_l – biomass at length

- p_{l}^{N} proportion of catch in number-at-length p_{l}^{W} – proportion of catch in weight-at-length
- C_{l}^{N} catch in number-at-length
- C_1^{W} catch in weight-at-length
 - W_l weight at length

Problems with Numbers-based LCA

- In the Jones numbers-based method, catch weight is converted to numbers, abundance is estimated in numbers, and then population numbers are converted back to weight (biomass) for management actions (i.e. TAC, quota etc).
- The first and last step introduce errors into the population estimates.
- The first and last step can be eliminated by directly using catch that is given in weight-at-length to estimate biomass-at-length.
- Numbers-based methods assume mortality (Z) is the only process affecting biomass. Even if Z=0, growth (G) affects changes in biomass.
- Numbers-based methods will ALWAYS overestimate biomass when growth is positive.

5 Data Requirements

Data Requirements from Fishery

- Length-frequency data. Weight at length. Catch length composition (catch biomass by length interval) for one harvest year minimum.
- 2. Total catch biomass (one harvest year minimum).

Data Requirements-General

- 3. Length-Weight Data
- parameters: Allometric length-weight parameters (α , β)
- data: length, weight

Data Requirements-General

- 4. Length-at-Age Data
- parameters: von Bertalanffy parameters (K, L_{∞}, t_0)
- data: length, age

$$L_{t} = L_{\infty} (1 - e^{(-K(t - t_{0}))})$$

Data Requirements

- 5. Natural Mortality (M)
- Use empirical relationship based on life history parameters
- C.I Zhang and B.A. Megrey. A revised Alverson and Carney model for estimating the instantaneous rate of natural mortality. 2006. Transactions of the American Fisheries Society 135: 620-633.
- t_{mb}=fxn(t_{max})

$$M = \frac{\beta K}{e^{K(t_{mb} - t_0)} - 1}$$

The Model

1. The generalized equation for change in biomass (indexing backwards in time) is

$$B_{t} = B_{t+\Delta t} \exp(M \cdot \Delta t - G_{t}) + C_{t} \exp\left(\frac{M \cdot \Delta t - G_{t}}{2}\right)$$

2. We can solve the von Bertalanffy growth equation for t

$$L_{t} = L_{\infty} (1 - e^{(-K(t - t_{0}))}) \qquad t_{l_{i}} = t_{0} - \frac{1}{K} \ln \left(\frac{L_{\infty} - l_{i}}{L_{\infty}}\right)$$

3. If Δt is the time to grow from length class l_i to length class $l_{i+\Delta l}$ then

$$t_{l_i} = t_0 - \frac{1}{K} \ln \left(\frac{L_{\infty} - l_i}{L_{\infty}} \right)$$

$$t_{l_i+\Delta l} = t_0 - \frac{1}{K} \ln\left(\frac{L_{\infty} - l_{i+\Delta l}}{L_{\infty}}\right) \quad \text{and}$$

$$\Delta t_{l_i} = t_{l_i + \Delta l} - t_{l_i} = \frac{1}{K} \ln \left(\frac{L_{\infty} - l_i}{L_{\infty} - l_{i + \Delta l}} \right)$$

The Model (con't)

4. Substituting 3 into 1 gives

$$B_{l_i} = B_{l_i + \Delta l} \exp\left(\frac{M}{K} \ln\left(\frac{L_{\infty} - l_i}{L_{\infty} - l_{i + \Delta l}}\right) - G_{l_i}\right) + C_{l_i} \exp\left(\frac{M}{2K} \ln\left(\frac{L_{\infty} - l_i}{L_{\infty} - l_{i + \Delta l}}\right) - \frac{G_{l_i}}{2}\right)$$

5. Which simplifies to

$$B_{l_i} = \left(B_{l_i + \Delta l} X_{l_i} + C_{l_i}\right) X_{l_i}$$

where

$$X_{l_i} = \left(\frac{L_{\infty} - l_i}{L_{\infty} - l_{i+\Delta l}}\right)^{\frac{M}{2K}} \times \exp\left[-\frac{G_{l_i}}{2}\right]$$

and
$$\Delta t_{l_i} = \frac{1}{K} \ln \left(\frac{L_{\infty} - l_i}{L_{\infty} - l_{i+\Delta l}} \right)$$

$$= \exp\left(\frac{M \cdot \Delta t_{l_i} - G_{l_i}}{2}\right)$$

6. Finally, convert length to weight

$$W_{l_i} = \alpha l_i^{\beta}$$

7. And calculate growth rate per length class $G_{l_i} = \ln \left(\frac{W_{l_i + \Delta l}}{W_{l_i}} \right)$

LCA-The Steps

Step	Description	Formula
1	Calculate W from I	$W_{l_i} = \alpha \left(\frac{l_i + l_{i+\Delta l}}{2}\right)^{\beta}$
2	Calculate growth rate	$G_{l_i} = \ln \left(\frac{W_{l_i + \Delta l}}{W_{l_i}} \right)$
3	Calculate ⊿t _{li}	$\Delta t_{l_i} = \frac{1}{K} \ln \left(\frac{L_{\infty} - l_{l_i}}{L_{\infty} - l_{l_i + \Delta l}} \right)$
4	Calculate X ₁	$X_{l_i} = \exp\left(\frac{M \cdot \Delta t_{l_i} - G_{l_i}}{2}\right)$
5	Estimate biomass in longest length interval	$B_{l_i} = C_{l_i} \cdot \frac{(M+F) \cdot \Delta t_{l_i} - G_{l_i}}{F \cdot \Delta t_{l_i}}$
6	Recursive equation	$B_{l_i} = (B_{l_i + \Delta l} \cdot X_{l_i} + C_{l_i}) \cdot X_{l_i}$
7	Calculate F	$F_{l_i} \cdot \Delta t_{l_i} = \ln \left(\frac{B_{l_i}}{B_{l_i + \Delta l}}\right) - M \cdot \Delta t_{l_i} + G_{l_i}$

Spreadsheet Calculation

	W=aL^b	а	b	L_inf	K	М	F	Z				
Constants –	->	0.0018	3.567	51.67	0.299	0.424	0.424	0.848				
					M/K =	1.418	F/Z =	0.500				
	Length(I)	W(l) (g)	C(I)	dt	G(l)	X(I)	B(I)	N(I)	S_t	Z*dt	F/Z	F*dt
	12	14.72	12.803	0.085388391	0.27	0.888	24860	1689	0.7326	0.0367	0.012	0.000
	13		128.410	0.087625699	0.25	0.897	31536	1628	0.7440	0.0408	0.090	0.004
Intermediate	14	25.00	143.369	0.08998341	0.24	0.905	39064	1563	0.7563	0.0415	0.080	0.003
	15	31.71	373.293	0.092471514	0.22	0.912	47542	1499	0.7638	0.0464	0.155	0.007
Calculations	16	39.63	1264.125	0.095101136	0.21	0.919	56726	1431	0.7627	0.0610	0.339	0.021
	17	48.89	1862.688	0.097884704	0.20	0.925	65832	1347	0.7663	0.0680	0.390	0.027
	18	59.60	3455.201	0.100836146	0.19	0.930	74987	1258	0.7601	0.0866	0.506	0.044
	19	71.92	4535.111	0.103971121	0.18	0.935	82975	1154	0.7596	0.0965	0.543	0.052
	20	85.96	5275.069	0.107307299	0.17	0.940	90051	1048	0.7618	0.1021	0.554	0.057
	21	101.88	5712.401	0.110864695	0.16	0.944	96366	946	0.7659	0.1046	0.551	0.058
	22	119.81	6572.327	0.114666068	0.16	0.948	102076	852	0.7659	0.1116	0.564	0.063
Data	23	139.92	7811.904	0.118737412	0.15	0.952	106615	762	0.7624	0.1227	0.590	0.072
Data 🛏	24	162.34	8053.763	0.123108547	0.14	0.956	109422	674	0.7650	0.1251	0.583	0.073
	25	187.24	9424.183	0.127813857	0.14	0.959	111361	595	0.7588	0.1389	0.610	0.085
	26	214.78	10078.384	0.132893192	0.13	0.963	111176	518	0.7559	0.1477	0.618	0.091
	27	245.12	12703.309	0.138393	0.13	0.966	109461	447	0.7371	0.1776	0.670	0.119
	28	278.42	15352.911	0.144367756	0.12	0.970	104101	374	0.7128	0.2155	0.716	0.154
	29	314.87	17583.499	0.150881769	0.12	0.973	94903	301	0.6827	0.2627	0.757	0.199
	36	254.62	10116 610	0.150011511	0.10	0.076	82189	232	0.6509	0.3143	0.787	0.247
	31	D _	$(B_{i, A})$	$\cdot X_{l_i} + C_{l_i}$	~)	$(C_L) \cdot X_L$	67342	169	0.6260	0.3569	0.803	0.287
	32	$B_{l_i} =$	$(D_{l_i+\Delta l})$		-1).		52686	118	0.6314	0.3517	0.790	0.278
	33	490.01	11930.334	0.104112013	0.10	0.901	41295	83	0.5948	0.4145	0.812	0.336
	34	550.39	10107.915	0.194841437	0.10	0.990	30299	55	0.5568	0.4837	0.829	0.401
	35	609.45	8563.678	0.206898463	0.10	0.994	20684	34	0.4881	0.6182	0.858	0.530
	36	672.93	6444.818	0.220546703	0.10	0.999	12308	18	0.3946	0.8335	0.888	0.740
	37	741.04	2951.927	0.23612355	0.09	1.003	5890	8	0.4095	0.7988	0.875	0.699
	38	813.97	781.570	0.254069085	0.09	1.008	2910	4	0.5975	0.4235	0.746	0.316
	39	891.94	197.872	0.274968388	0.09	1.014	2088	2	0.7358	0.2176	0.464	0.101
	40	975.13	216.574	0.299616659	0.09	1.020	1836	2	0.7102	0.2552	0.502	0.128
	41	1063.78	157.676	0.329122929	0.08	1.028	1552	1	0.7155	0.2498	0.441	0.110
	42	1158.07		0.365082002	0.08	1.037	1316	1	0.7884	0.1548	0.000	0.000
	43		186.874	0.409873496	0.08	1.047	1225	1				
	44	1364.50										
				POCCARENDOCCARENDOCCARENDOCCARENDOCCA		(1,782,677	Total B	iomass			

Comparing Model Performance to Simulated Data

Model Results (based on B) vs. Simulated Data with no error

Jones Model (based on N) vs. Simulated Data with no error

Biomass-based estimation of F_{x%} Using Length Structure

The fishing mortality $(F_{x\%})$ that maintains the spawning biomass at an arbitrary percentage (x%) of the virgin spawning biomass (i.e. F=0) can be determined by calculating the following ratio.

 $x\% = \frac{Spawning Biomass with exploitation (F_{x\%})}{Virgin Spawning Biomass (F = 0)}$

Biomass-based estimation of F_{x%} Using Length Structure

Solving the following equation by using any nonlinear solution algorithm

$$x\% = \frac{\sum_{i=l}^{l_{\lambda}} B'_i \cdot m_i \cdot e^{G_i - (M + F_{x\%} \cdot S_i) \cdot \left(\frac{1}{K} \ln\left(\frac{(L_{\infty} - l_i)}{(L_{\infty} - l_{i+1})}\right)\right)}}{\sum_{i=l}^{l_{\lambda}} B_i \cdot m_i \cdot e^{G_i - M \cdot \left(\frac{1}{K} \ln\left(\frac{(L_{\infty} - l_i)}{(L_{\infty} - l_{i+1})}\right)\right)}}$$

where

$$B_{i} = B_{i-1} \cdot e^{G_{i-1} - M \cdot \Delta_{i-1}} = B_{i-1} \cdot e^{G_{i-1} - M \cdot \left(\frac{1}{K} \ln\left(\frac{(L_{\infty} - l_{i-1})}{(L_{\infty} - l_{i})}\right)\right)} \text{ for } F = 0$$

$$B'_{i} = B'_{i-1} \cdot e^{G_{i-1} - (M + F_{x\%} \cdot S_{i-1}) \cdot \left(\frac{1}{K} \ln\left(\frac{(L_{\infty} - l_{i-1})}{(L_{\infty} - l_{i})}\right)\right)} \text{ for } F = x\%$$

 $G_i = \ln \left(\frac{W_{i+1}}{W_i}\right)$

 $\begin{array}{l} B_i: \mbox{Population biomass at length group} \\ i \ when F=0. \\ B'_i: \mbox{Population biomass at length group i} \\ when F=F_{x\%}. \\ m_i: \ Maturity \ ratio \ of \ length \ group i. \\ l_i: \ Initial \ length \ of \ length \ group i. \\ l_{i+1}: \ Initial \ length \ of \ length \ group i+1 \ (or \ Maximum \ length \ of \ length \ group i) \\ l_{\lambda}: \ last \ length \ group. \\ F_{x\%}: \ Fishing \ mortality \ that \ maintains \ the \ spawning \ biomass \ at \ x\% \ of \ the \ virgin \ spawning \ biomass \ (or \ when \ F=0). \\ S_i: \ Fishing \ selectivity \ of \ length \ group \ i. \\ G_i: \ Growth \ rate \ of \ length \ group \ i. \end{array}$

Any Precautionary fishery metric

 $\begin{array}{l} \mathbf{F}_{\mathrm{med}}, \mathbf{F}_{\mathrm{crit}}, \mathbf{F}_{\mathrm{lim}}, \mathbf{F}_{\mathrm{MSY}}, \\ \mathbf{F}_{40\%}, \mathbf{F}_{\mathrm{x\%}} \end{array}$

Estimation of Yield-per Recruit Using Length Structure

$$\frac{Y}{R} = F \cdot W_{\infty} \cdot \exp\left[-M \cdot \left(t_{c} - t_{r}\right)\right] \cdot \sum_{n=0}^{3} \frac{U_{n} \cdot \exp\left[-n \cdot K \cdot \left(t_{c} - t_{0}\right)\right]}{F + M + n \cdot K}$$

Yield-per-Recruit Model Using Age Structure $\frac{Y}{R} = F \cdot \left(\alpha \cdot L_{\infty}^{\ \beta}\right) \cdot \left[\frac{L_{\infty} - l_r}{L_{\infty}}\right]^{\frac{M}{K}} \cdot \left[\frac{L_{\infty} - l_c}{L_{\infty}}\right]^{\frac{M}{K}} \cdot \sum_{n=0}^{3} \frac{U_n \cdot \left[\frac{L_{\infty} - l_c}{L_{\infty}}\right]^n}{F + M + n \cdot K}$

Yield-per-Recruit Model Using Length Structure l_r^c - length at recruitment

 α – length weight coefficient β – length weight power coefficient W_m - maximum weight L_{∞} - maximum length F – fishing mortality M – natural mortality t_c – age of first capture $t_r - age of recruitment$ t_0 – von Bertalanffy parameter; t_0 is the theoretical age at which the fish would have length zero if it had always grown as described by the von Bertalanffy equation K – von Bertalanffy growth rate l_c – length at first capture U_n – integration coefficient; $U_0=1$, $U_1 = -3$, $U_2 = 3$, and $U_3 = -1$

Estimation of Yield-per Recruit Using Length Structure

Yield-per-Recruit Model Using Age Structure α – length weight coefficient β – length weight power coefficient $= F \cdot W_{\infty} \exp\left[-M \cdot (t_c - t_r)\right] \cdot \sum_{n=0}^{3} \frac{U_n \cdot \exp\left[-n \cdot \overline{K \cdot (t_c - t_0)}\right]}{F + M + n \cdot K}$ W_w - maximum weight L_{∞} - maximum length F – fishing mortality M – natural mortality t_{c} – age of first capture $t_r - age of recruitment$ $= \alpha \cdot L_{\alpha}^{\beta}$ t_0 – von Bertalanffy parameter; t_0 is the theoretical age at which the fish would have length zero if it had always grown as described by the von Bertalanffy equation K – von Bertalanffy growth rate l_c – length at first capture l_r – length at recruitment $\frac{Y}{R} = F \cdot \left(\alpha \cdot L_{\infty}^{\beta}\right) \left[\frac{L_{\infty} - l_{r}}{L_{\infty}}\right]^{\frac{M}{K}} \cdot \left[\frac{L_{\infty} - l_{c}}{L_{\infty}}\right]^{\frac{M}{K}} \cdot \sum_{n=0}^{3} \frac{U_{n} \cdot \left[\frac{L_{\infty} - l_{c}}{L_{\infty}}\right]^{n}}{F + M + n \cdot K}\right]$ U_n – integration coefficient; U_0 =1, $U_1 = -3$, $U_2 = 3$, and $U_3 = -1$

Yield-per-Recruit Model Using Length Structure

Estimation of Yield-per Recruit Using Length Structure

Yield-per-Recruit Model Using Length Structure

Estimation of Yield-per Recruit Using Length Structure

Yield-per-Recruit Model Using Age Structure α – length weight coefficient β – length weight power coefficient $\frac{Y}{R} = F \cdot W_{\infty} \cdot \exp\left[-M \cdot \left(t_{c} - t_{r}\right)\right] \cdot \sum_{n=0}^{3} \frac{U_{n} \left(\exp\left[-n \cdot K \cdot \left(t_{c} - t_{0}\right)\right]}{F + M + n \cdot K}\right)$ W_m - maximum weight L_{∞} - maximum length F – fishing mortality M – natural mortality t_{c} – age of first capture $t_r - age of recruitment$ t_0 – von Bertalanffy parameter; t_0 is $\left| \exp\left[-n \cdot K \cdot \left(t_c - t_0 \right) \right] = \left| \frac{L_{\infty} - l_c}{L} \right| \right|$ the theoretical age at which the fish would have length zero if it had always grown as described by the von Bertalanffy equation K – von Bertalanffy growth rate l_c – length at first capture l_r – length at recruitment $\frac{Y}{R} = F \cdot \left(\alpha \cdot L_{\infty}^{\beta} \right) \cdot \left[\frac{L_{\infty} - l_{r}}{L_{\infty}} \right]^{\frac{M}{K}} \cdot \left[\frac{L_{\infty} - l_{c}}{L_{\infty}} \right]^{\frac{M}{K}} \cdot \sum_{n=0}^{3} \frac{U_{n} \left(\frac{L_{\infty} - l_{c}}{L_{\infty}} \right)^{n}}{F + M + n \cdot K}$ U_n – integration coefficient; $U_0=1$, $U_1 = -3$, $U_2 = 3$, and $U_3 = -1$

Yield-per-Recruit Model Using Length Structure

Yield Contours with F_{40%} and F_{max} Isopleths

Apply model to eastern Bering Sea northern rock sole data

Biomass and Fishing Mortality Northern Rock Sole

Conclusions

- Biomass LCA is simple to apply
 - Assumptions are minimal
 - Calculations are not complicated and easily implemented with spreadsheet software
 - Data needs are modest only 1 year of catch information
- Method works well compared to simulated data with known properties
- Can be easily extended to include calculation of useful and relevant management metrics
 - Biomass and fishing mortality by length
 - Population biomass
 - $F_{x\%}$ calculations and biomass estimates allow calculation of approximate ABC or TAC
 - Yield per Recruit using length structure
- Biomass LCA should be considered for small scale fisheries resource assessment