Estimating Biomass and Management Parameters from Length Composition Data: A Stock Assessment Method for Data Deficient Situations

Bernard A. Megrey and Chang Ik Zhang
PICES Annual Meeting
Dalian PR China
Friday, October 31, 2008

NOAA
 FISHERIES
 SERVICE

Outline

- Motivation
- Model description
- Compare a numbers-based length cohort analysis (Jones LCA, 1979) method to a new biomass-based method that explicitly incorporates growth.
- Investigate the performance of the biomassbased LCA and the more traditional numbersbased LCA on simulated data.
- Demonstrate management applications.
- Test performance by applyingthe model to actual data on eastern Bering Sea northern rock sole

Motivation

- Long time series of catch are not always available.
- Small fish populations are not usually assessed with research surveys.
- Often catch is recorded in weight and by size groups, but no age data are collected.
- FAO (2005) reports that 143 exploited stocks (20\%) are not assessed due to lack of available information.
- These situations are exactly those that describe small-scale or artisanal fisheries.
- Stocks still need active management to maintain sustainability.

Objective

- Describe a biomass-based cohort analysis method based on length composition data (LCA) that can be used in small-scale fisheries situations.
- Develop model extensions to allow the calculation of relevant management metrics using only length composition data.
- Apply to data of an exploited and managed stock (i.e. assessments and research surveys performed)

Typical LCA Calculations

Step	Number-based LCA	Biomass-based LCA
1	$C N=\frac{C W}{\bar{W}}$	$C_{l}^{W}=C W p_{l}^{W}$
2	$C_{l}^{N}=C N p_{l}^{N}$	
3	$\hat{N}_{l}=f x n\left(C_{l}^{N}, M, K, L_{\infty}\right)$	$\hat{B}_{l}=f x n\left(C_{l}^{W}, M, K, L_{\infty}, W_{l}\right)$
4	$\hat{B}_{l}=N_{l} W_{l}$	

$C N$ - catch in number
$C W$ - catch in weight
\bar{W} - average weight
N_{l} - number at length
B_{l} - biomass at length
p_{l}^{N} - proportion of catch in number-at-length
p_{l}^{w} - proportion of catch in weight-at-length
C_{l}^{N} - catch in number-at-length
C_{l}^{W} - catch in weight-at-length
W_{l} - weight at length

Problems with Numbers-based LCA

- In the Jones numbers-based method, catch weight is converted to numbers, abundance is estimated in numbers, and then population numbers are converted back to weight (biomass) for management actions (i.e. TAC, quota etc).
- The first and last step introduce errors into the population estimates.
- The first and last step can be eliminated by directly using catch that is given in weight-at-length to estimate biomass-at-length.
- Numbers-based methods assume mortality (Z) is the only process affecting biomass. Even if $\mathrm{Z}=0$, growth (G) affects changes in biomass.
- Numbers-based methods will ALWAYS overestimate biomass when growth is positive.

5 Data Requirements

Data Requirements from Fishery

- 1. Length-frequency data. Weight at length. Catch length composition (catch biomass by length interval) for one harvest year minimum.
- 2. Total catch biomass (one harvest year minimum).

Data Requirements-General

- 3. Length-Weight Data parameters: Allometric length-weight parameters (α, β) data: length, weight
$W_{l}=\alpha L_{l}{ }^{\beta}$

Data Requirements-General

- 4. Length-at-Age Data
- parameters: von Bertalanffy parameters (K, L_{∞}, t_{0})

$$
L_{t}=L_{\infty}\left(1-e^{\left(-K\left(t-t_{0}\right)\right)}\right)
$$

Data Requirements

- 5. Natural Mortality (M)
- Use empirical relationship based on life history parameters
- C.I Zhang and B.A. Megrey. A revised Alverson and Carney model for estimating the instantaneous rate of natural mortality. 2006. Transactions of the American

Fisheries Society 135: 620-633.

- $t_{m b}=f x n\left(t_{\max }\right)$

$$
M=\frac{\beta K}{e^{K\left(t_{m b}-t_{0}\right)}-1}
$$

The Model

1. The generalized equation for change in biomass (indexing backwards in time) is

$$
B_{t}=B_{t+\Delta t} \exp \left(M \cdot \Delta t-G_{t}\right)+C_{t} \exp \left(\frac{M \cdot \Delta t-G_{t}}{2}\right)
$$

2. We can solve the von Bertalanffy growth equation for t

$$
L_{t}=L_{\infty}\left(1-e^{\left(-K\left(t-t_{0}\right)\right)}\right)
$$

$$
t_{l_{i}}=t_{0}-\frac{1}{K} \ln \left(\frac{L_{\infty}-l_{i}}{L_{\infty}}\right)
$$

3. If Δt is the time to grow from length class l_{i} to length class l_{i+} then
$t_{l_{i}}=t_{0}-\frac{1}{K} \ln \left(\frac{L_{\infty}-l_{i}}{L_{\infty}}\right)$
$t_{l_{i}+\Delta l}=t_{0}-\frac{1}{K} \ln \left(\frac{L_{\infty}-l_{i+\Delta l}}{L_{\infty}}\right)$ and

$$
\Delta t_{l_{i}}=t_{l_{i}+\Delta l}-t_{l_{i}}=\frac{1}{K} \ln \left(\frac{L_{\infty}-l_{i}}{L_{\infty}-l_{i+\Delta l}}\right)
$$

The Model (con't)

4. Substituting 3 into 1 gives

$$
B_{l_{i}}=B_{l_{i}+\Delta l} \exp \left(\frac{M}{K} \ln \left(\frac{L_{\infty}-l_{i}}{L_{\infty}-l_{i+\Delta l}}\right)-G_{l_{i}}\right)+C_{l_{i}} \exp \left(\frac{M}{2 K} \ln \left(\frac{L_{\infty}-l_{i}}{L_{\infty}-l_{i+\Delta l}}\right)-\frac{G_{l_{i}}}{2}\right)
$$

5. Which simplifies to

$$
B_{l_{i}}=\left(B_{l_{i}+\Delta l} X_{l_{i}}+C_{l_{i}}\right) X_{l_{i}}
$$

where

$$
\begin{aligned}
& X_{l_{i}}=\left(\frac{L_{\infty}-l_{i}}{L_{\infty}-l_{i+\Delta l}}\right)^{\frac{M}{2 K}} \times \exp \left[-\frac{G_{l_{i}}}{2}\right] \text { and } \Delta t_{l_{i}}=\frac{1}{K} \ln \left(\frac{L_{\infty}-l_{i}}{L_{\infty}-l_{i+\Delta l}}\right) \\
& \quad=\exp \left(\frac{M \cdot \Delta t_{l_{i}}-G_{l_{i}}}{2}\right) \\
& \text { 6. Finally, convert length to weight } W_{l_{i}}=\alpha l_{i}^{\beta}
\end{aligned}
$$

7. And calculate growth rate per length class

$$
G_{l_{i}}=\ln \left(\frac{W_{l_{i}+\Delta l}}{W_{l_{i}}}\right)
$$

LCA-The Steps

Step	Description	Formula
1	Calculate W from /	$W_{t_{i}}=\alpha\left(\frac{l_{i}+l_{\text {l }}}{2}\right)^{\beta}$
2	Calculate growth rate G	$G_{l_{4}}=\ln \left(\frac{W_{W_{t+\nu}}}{W_{t_{4}}}\right)$
3	Calculate $\Delta t_{\text {li }}$	$\Delta t_{l i}=\frac{1}{K} \ln \left(\frac{L_{\infty}-l_{l}}{L_{\infty}-l_{l+\Delta}}\right)$
4	Calculate X_{I}	$X_{L_{1}}=\exp \left(\frac{M \cdot \Delta t_{1}-G_{L_{4}}}{2}\right)$
5	Estimate biomass in longest length interval	$B_{l}=C_{l} \cdot \frac{(M+F) \cdot \Delta t_{l}-G_{l_{l}}}{F \cdot \Delta t_{l}}$
6	Recursive equation	$B_{l_{t}}=\left(B_{l_{t+\Delta l}} \cdot X_{l_{i}}+C_{l_{t}}\right) \cdot X_{l_{t}}$
7	Calculate F	$F_{l_{i}} \cdot \Delta t_{l_{l}}=\ln \left(\frac{B_{l_{l}}}{B_{l^{\prime}+\Lambda}}\right)-M \cdot \Delta t_{l_{i}}+G_{l_{l}}$

Spreadsheet Calculation

Comparing Model Performance to Simulated Data

Model Results (based on B) vs. Simulated Data with no error

Jones Model (based on N) vs. Simulated Data with no error

Biomass-based estimation of $F_{\text {x\% }}$ Using Length Structure

The fishing mortality ($\mathrm{F}_{\mathrm{x} \%}$) that maintains the spawning biomass at an arbitrary percentage ($\mathrm{x} \%$) of the virgin spawning biomass (i.e. $\mathrm{F}=0$) can be determined by calculating the following ratio.

$$
x \%=\frac{\text { Spawning Biomass with exploitation }\left(F_{x \%}\right)}{\text { Virgin Spawning Biomass }(F=0)}
$$

Biomass-based estimation of $F_{\text {x\% }}$ Using Length Structure

Solving the following equation by using any nonlinear solution algorithm

$$
x \%=\frac{\sum_{i=l}^{l_{\lambda}} B_{i}^{\prime} \cdot m_{i} \cdot e^{G_{i}-\left(M+F_{x \%} \cdot S_{i}\right) \cdot\left(\frac{1}{K} \ln \left(\frac{\left(L_{\infty}-l_{i}\right)}{\left(L_{\infty}-l_{i+1}\right)}\right)\right)}}{\sum_{i=l}^{l_{\lambda}} B_{i} \cdot m_{i} \cdot e^{G_{i}-M \cdot\left(\frac{1}{K} \ln \left(\frac{\left(L_{\infty}-l_{i}\right)}{\left(L_{\infty}-l_{i+1}\right)}\right)\right)}}
$$

where
$B_{i}=B_{i-1} \cdot e^{G_{i-1}-M \cdot \Delta_{i-1}}=B_{i-1} \cdot e^{G_{i-1}-M \cdot\left(\frac{1}{K} \ln \left(\frac{\left(L_{\infty}-l_{i-1}\right)}{\left(L_{\infty} l_{i}\right)}\right)\right)}$ for $F=0$
B_{i} : Population biomass at length group i when $\mathrm{F}=0$.
B_{i} : Population biomass at length group i when $\mathrm{F}=\mathrm{F}_{\mathrm{x} \%}$.
m_{i} : Maturity ratio of length group i .
l_{i} : Initial length of length group i.
$\mathrm{l}_{\mathrm{i}+1}$: Initial length of length group $\mathrm{i}+1$ (or Maximum length of length group i) l_{λ} : last length group.
$\mathrm{F}_{\mathrm{x} \%}$: Fishing mortality that maintains the spawning biomass at $\mathrm{x} \%$ of the virgin spawning biomass (or when $\mathrm{F}=0$).
S_{i} : Fishing selectivity of length group i .
G_{i} : Growth rate of length group i.

$$
B_{i}^{\prime}=B_{i-1}^{\prime} \cdot e^{G_{i-1}-\left(M+F_{x \%} \cdot S_{i-1}\right) \cdot\left(\frac{1}{K} \ln \left(\frac{\left(L_{\infty}-l_{i-1}\right)}{\left(L_{\infty}-l_{i}\right)}\right)\right)} \text { for } F=x \%
$$

$$
G_{i}=\ln \left(\frac{W_{i+1}}{W_{i}}\right)
$$

Any Precautionary fishery metric

Estimation of Yield-per Recruit Using Length Structure

$$
\frac{Y}{R}=F \cdot W_{\infty} \cdot \exp \left[-M \cdot\left(t_{c}-t_{r}\right)\right] \cdot \sum_{n=0}^{3} \frac{U_{n} \cdot \exp \left[-n \cdot K \cdot\left(t_{c}-t_{0}\right)\right]}{F+M+n \cdot K}
$$

Yield-per-Recruit Model Using Age Structure
α - length weight coefficient
β - length weight power coefficient
W_{∞} - maximum weight
L_{∞} - maximum length
F - fishing mortality
M - natural mortality
t_{c} - age of first capture
t_{r} - age of recruitment
t_{0} - von Bertalanffy parameter; t_{0} is the theoretical age at which the fish would have length zero if it had always grown as described by the von
Bertalanffy equation
K - von Bertalanffy growth rate
l_{c} - length at first capture
Yield-per-Recruit Model Using Length Structure
U_{n} - integration coefficient; $\mathrm{U}_{0}=1$,
$\mathrm{U}_{1}=-3, \mathrm{U}_{2}=3$, and $\mathrm{U}_{3}=-1$

Estimation of Yield-per Recruit Using Length Structure

Yield-per-Recruit Model Using Age Structure

$$
\begin{gathered}
{\left[\frac{Y}{R}=F\left(W_{n} \cdot \exp \left[-M \cdot\left(t_{c}-t_{r}\right)\right] \cdot \sum_{n=0}^{3} \frac{\left.U_{n} \cdot \exp \left[-n \cdot K \cdot\left(t_{0}-t_{0}\right)\right]\right]}{F+M+n \cdot K}\right]\right.} \\
W_{\infty}=\alpha \cdot L_{\infty}^{\beta}
\end{gathered}
$$

α - length weight coefficient
β - length weight power coefficient
W_{∞} - maximum weight
L_{∞} - maximum length
F - fishing mortality
M - natural mortality
t_{c} - age of first capture
t_{r} - age of recruitment
t_{0} - von Bertalanffy parameter; t_{0} is the theoretical age at which the fish would have length zero if it had always grown as described by the von Bertalanffy equation
K - von Bertalanffy growth rate
1_{c} - length at first capture
l_{r} - length at recruitment
U_{n} - integration coefficient; $\mathrm{U}_{0}=1$, $\mathrm{U}_{1}=-3, \mathrm{U}_{2}=3$, and $\mathrm{U}_{3}=-1$

Estimation of Yield-per Recruit Using Length Structure

Yield-per-Recruit Model Using Age Structure

$\frac{Y}{R}=F \cdot W_{\infty} \cdot \exp \left[-M \cdot\left(t_{c}-t_{r}\right)\right] \sum_{n=0}^{3} \frac{U_{n} \cdot \exp \left[-n \cdot K \cdot\left(t_{c}-t_{0}\right)\right]}{F+M+n \cdot K}$

α - length weight coefficient
β - length weight power coefficient
W_{∞} - maximum weight
L_{∞} - maximum length
F - fishing mortality
M - natural mortality
t_{c} - age of first capture
t_{r} - age of recruitment
t_{0} - von Bertalanffy parameter; t_{0} is the theoretical age at which the fish would have length zero if it had always grown as described by the von Bertalanffy equation
K - von Bertalanffy growth rate
1_{c} - length at first capture
l_{r} - length at recruitment
U_{n} - integration coefficient; $\mathrm{U}_{0}=1$, $\mathrm{U}_{1}=-3, \mathrm{U}_{2}=3$, and $\mathrm{U}_{3}=-1$

Estimation of Yield-per Recruit Using Length Structure

Yield-per-Recruit Model Using Age Structure $\frac{Y}{R}=F \cdot W_{\infty} \cdot \exp \left[-M \cdot\left(t_{c}-t_{r}\right)\right] \cdot \sum_{n=0}^{3} \frac{U_{n}}{\left(\exp \left[-n \cdot K \cdot\left(t_{c}-t_{0}\right)\right]\right.} \underset{F+M / n \cdot K}{ }$

$$
\exp \left[-n \cdot K \cdot\left(t_{c}-t_{0}\right)\right]=\left[\frac{L_{\infty}-l_{c}}{L_{\infty}}\right]^{n}
$$

$$
\frac{Y}{R}=F \cdot\left(\alpha \cdot L_{\infty}{ }^{\beta}\right) \cdot\left[\frac{L_{\infty}-l_{r}}{L_{\infty}}\right]^{\frac{M}{K}} \cdot\left[\frac{L_{\infty}-l_{c}}{L_{\infty}}\right]^{\frac{M}{K}} \cdot \sum_{n=0}^{3} \frac{\left.U_{n} \cdot \frac{L_{\infty}-I_{c}}{L_{\infty}}\right]^{\prime \prime}}{F+M+n \cdot K}
$$

β - length weight power coefficient
W_{∞} - maximum weight
L_{∞} - maximum length
F - fishing mortality
M - natural mortality
t_{c} - age of first capture
t_{r} - age of recruitment
t_{0} - von Bertalanffy parameter; t_{0} is the theoretical age at which the fish would have length zero if it had
always grown as described by the von
Bertalanffy equation
K - von Bertalanffy growth rate
1_{c} - length at first capture
l_{r} - length at recruitment
U_{n} - integration coefficient; $\mathrm{U}_{0}=1$, $\mathrm{U}_{1}=-3, \mathrm{U}_{2}=3$, and $\mathrm{U}_{3}=-1$

Yield Contours with $\mathrm{F}_{40 \%}$ and $\mathrm{F}_{\max }$ Isopleths

Apply model to eastern Bering Sea northern rock sole data

Eastern Bering Sea Northern Rock Sole

Biomass and Fishing Mortality Northern Rock Sole

Conclusions

- Biomass LCA is simple to apply
- Assumptions are minimal
- Calculations are not complicated and easily implemented with spreadsheet software
- Data needs are modest - only 1 year of catch information
- Method works well compared to simulated data with known properties
- Can be easily extended to include calculation of useful and relevant management metrics
- Biomass and fishing mortality by length
- Population biomass
- $F_{x \%}$ calculations and biomass estimates allow calculation of approximate ABC or TAC
- Yield per Recruit using length structure
- Biomass LCA should be considered for small scale fisheries resource assessment

