Two decadal changes of *Heterosigam akashiwo* blooms in Korean coastal waters

Kim, H.G, S.G. Lee, C.K. Lee, K.H. An, W.L. Lim, S.Y. Kim, Y.S. Park, Y. Lee

2007/10/20

Historical record of red tides

- Historical record

■ HABs in 639 in the Silla dynasty 東海水赤且熱魚鼈死(三國史記卷第5號)

The coastal seawater in the East Sea was discolored as

red with high temperature, and some turtle and finfish were found in dead.

Now we are dispersing clay !!

Aerial view of clay dispersion in South Sea

Major topics of this presentation

I. Introduction & data acquisition

II. Brief ecology of Korean *H. akashiwo*

III. Two decadal changes of *H. akashiwo* blooms

IV. *H. akashiwo* in species succession in HABs

V. Eutrophication and *H. akashiwo* blooms

VI. Conclusions

The Monitoring of Marine Environment and HABs

Monitor components for Korean marine environment

Monitoring requirement		Required monitoring components				
	General items	SST, Salinity, pH, DO, COD, TN, TP, NO2 - N, NO3 - N, NH4 - N, PO4 - P, SS, Oil & Grease, Clearness				
SEAWATEK (21factors)	Trace metal	Cu, Pb, Zn, Cd, Cr ⁺⁶ , total Hg, As, CN				
(21140015)	Organic contaminants	PCBs, TBT				
SEDIMENT (12factors)	General items	Particle size, IL, AVS, COD				
	Trace metal	Cu, Pb, Zn, Cd, Cr ⁺⁶ , total Hg, As, CN				
	Organic contaminants	PCBs, TBT, Pesticides, PAHs, PCDDs/DFs				
ORGANISM (15factors)	General items	Chl a				
	Trace metal	Cu, Pb, Zn, Cd, Cr ⁺⁶ , total Hg, As, CN				
	Organic contaminants	PCBs, TBT, Pesticides, PAHs, PCDDs/DFs				

Biometrics of *H. akashiwo*

- Cell size and volume of single cell
 - **Cell length 8-25µm, width 6-15µm**
 - Average cell volume :1,031μm³
 - Average carbon contents : 141pg/cell
- Cell volume and carbon contents in the monospecific blooms
 - Bloom density : 1,300-112,360 cells/Ml
 - Cell volume (x10⁶µm³) : 1.3 115.8
 - Carbon contents (µgC/Mℓ) : 0.07 -3.33

Heterosigma akashiwo (HADA) HADA

Source :Kim et al., 1993

Fig. The growth curve of *H. akashiwo* in SW-II media.

Fig. 12. The trails of water temperature and salinity in the outbreaks of red tides caused by *Heterosigma* akashiwo. 1. Chinhae Bay, 2. Onsan Bay.

Fig. Annual changes in the number of outbreaks of *H. akashiwo* blooms along the south coast in 1983-2005 period.

Fig. Monthly distribution of the number of outbreaks of *H. akashiwo* blooms along the south coast in 1983-2005 period.

Fig. Monthly distribution in the number of outbreaks of *H. akashiwo* blooms along the south coast in the first decade of 1983-1994 and that of the second decade 1995-2005.

Fig. The distribution of the average density in *H. akashiwo* blooms along the south coast in 1983-2005 period.

Fig. The number of outbreaks and their density of *H. akashiwo* blooms along the south coast in 1983-2005 period.

Fig. The average density of *H. akashiwo* blooms along the south coast in the first decade of 1983-1994 and that of the second decade 1995-2005.

Fig. The geographical spreading of *H. akashiwo* blooms along the south coast in 1983-1988 period.

Fig. The geographical spreading of *H. akashiwo* blooms along the south coast in 1989-1994 period.

Fig. The areas affected by *H. akashiwo* blooms in Jinhae By in the 19970s and 1980s

Fig. The areas affected by *H. akashiwo* blooms in Jinhae By in the 1990s and 2000s

Summary 1

The *H. akashiwo* blooms were in the peak in the 1995-2001 periods in Korean waters.

- The haunting season of this blooms is early summer(May-July) with peak in June.
- The high density blooms have been appeared in June.

Regional comparison of eutrophic level

Select 3 stations for regional comparison of species succession

- Masan : haunting area of HABs
- **Tongyoung : mariculture bed**
- Yeosu : bordering offshore waters

Eutrophic level in three representing regions

Recent eutrophic state in Masan Bay and Yosu coastal area

Terms	Yeosu	Masan Bay
COD(mg/l) DIN(uM) DIP(uM) DO (mg/l)	1~2 0.4~0.8 0.01~0.50	2~4 0.8~4.5 0.01~1.50
-hot season -cold season HABs	4~6 5~6 Multispecies	0~4 4~5 Monospecies

 \blacklozenge Assessment by Liebman's saprobien system

Yeosu : β - mesosaprobic state

Masan : a - mesosaprobic state

- **Based on COD (ppm)**
 - Oligotrophic : below 1
 - B-mesosaprobic : 1-3
 - a-mesosaprobic : 3-10
 - Polysaprobic : more than 10

Moath Year	Mar.	Apr.	May.	Jua.	र्राची.	Ang.	Sep.	Oct.
1980~ 1988			Skele.	Thala.	Skele. Hetero Proro.	Proro.		
10402 1000	Skele.		Entrep.	Hetero.	Hetero	Chaeto.		~
1989 1995	Hetero.		Proro.	Proro.	Proro.	Proro.	Skele.	Gym.
		Eutrep.	Eutrep.	Eutrep.	Others.	Others. Hetero Cer		
1993~1997			H et er o	Hetero	Hetero		Cera.	
			Proro.	Proro.	Proro.	Proro.		
		Entrep	H et er o	Cera	Cera	Proro		
1998 ~ 2001	Hetero capsa	Hetero	H et er o	Hetero	Ртото	Gym	Skele	
		Proro	Gym	Proro	Proro	Skele		
Skeleto	The lessio site			Chietocero s				
Butrey tiells		H etero și para			Fioroceatrum			
G улько (Ceretium			Alex on driven				

Fig. Species succession in HABs in Masan Bay since 1980

Others

N o e tilue s

Cochlo diainm

Species succession of phytoplankton community in Masan Bay representing Chinhae Bay

Month Year	Mar.	Apr.	May.	Jun	Jul.	Aug.	Sep.	Oct.
1980~1988					Skele.			
				** •	Gyn			
				Hetero.	Skele.		Cochl	
1989~1992		Noctil.	Proro.	Proro.	Proro.	Cochl.	Gyn.	
				Other	Proro.		Other.	
1002~1007		Hetero.	Hetero	Gyn.	Cera.	Gyn.	Cochl	Cochl
1992 1997		Gyn.	Proro.	Proro.	Proro.	Proro.		Gynn
1998~2001			Hetero	Hetero	Cera	Skel	Gym	
		Noctil	Hetero	Proro	Proro	Cochl		
			Cera		Cochl	Cochl	Cochl	
Skeletogens. Thelessiosice Cheetoceros					e to c e 10 S			
Butr ey tiells		H etero și r me			Frorocestrum			
Буль о d	isinm.	Ceretium			Alexadrium			
Cockloit		Moetilues			Others			

Fig. Species succession in HABs in Tongyoung Bay since 1980

Fig. Species succession of phytoplankton community in Tongyoung areas representing culture beds

Hoath Year	Mar.	Apr.	May.	Jua.	र्मच.	Aug.	Sep.	Oct.
1980 ~ 1988					Skele. Others			
1989~ 1992			H etero	Skele.	Skele. Proro. Alex.	Gym		
1993~ 1997		NoctiL	Skele. Hetero Noctil.	Proro Hetero Alex.	Skele. Hetero Cera.	Skele. Hetero Cera.	Cochi.	Cochl
1998 ~ 2001			Skele Hetero	Cera Hetero Proro	Skele Hetero Chaeto	Skele Coch1 Coch1	Coch1.	
Skeletogen Butreytielle Gymao diai	1.4. 1 1.	Th ele 5 șio șir e H etero șig me C er e tium			Chretocero s Froroceatrum Alex sa drium			
Cochlodiaium		Mot tilues			O thers			

Fig. Species succession in HABs in Yeosu Bay since 1980

Fig. Species succession of phytoplankton community in Yeosu areas representing culture beds

Succession directionality

Summary 2

- There found an annual and seasonal species succession in the monospecific bloom in Korean waters.
- H. akashiwo has been the prevailing species in spring and early summer both in inshore and offshore waters.
- H. akashiwo can be dominant even in summer in the inshore waters, but it was Cochlodinium polykrikoides in the offshore waters since 1995.

Fig. Annual changes of COD in the seawater collected from Jinhae Bay

Fig. Annual changes of DIN in the seawater collected from Jinhae Bay

Fig. Annual changes of DIP in the seawater collected from Jinhae Bay

Fig. Annual changes of eutrophic index in the seawater collected from Jinhae Bay. Okaichi Eutrophic index = $(COD_{(mg/l)}xDIN_{(ug-at/l)}xPO_4-P(_{(ug-at/l)})/3.43$

Configuration of COD in seawater in Aug. 2001 and *H. akashiwo* haunting areas

Coastal eutrophication and HABs

Fig. Annual changes of eutrophic index in the seawater Okaichi Eutrophic index = (COD_(mg/l)XDIN_(ug-atl)

Yearly distribution of the number of Red tides since 1981

Total number of red tides, concentration of N and P in the Seto Inland sea (Honjo, 1993, in Toxic Phytoplankton Blooms in the Sea)

Summary 3

- There found a significant relation between eutrophic state and the number of the outbreaks of *H. akashiwo* blooms.
- The high intensity of *H. akashiwo* blooms are coincident with the rainy season.
- B-mesosaprobic state would be the favorable condition for *H*. *akashiwo* bloom.

VI. Conclusions

H. akashiwo is the prevailing species of spring blooms in rainy season.

H. akashiwo blooms has been taken place in the inshore eutrophic coastal areas.

H. *akashiwo* blooms have recorded no fisheries impacts up to now.

2007/10/20

