Raphidophytes in Maryland and Delaware # Maryland northern coastal lagoons are eutrophic systems - Classified as highly susceptible to eutrophication (Bricker et al. 1999, 2007) - Public Landing, MD is associated with annual brown tide blooms - Extensive poultry farming and agriculture within watershed - Shallow poorly flushed bays ### Human population has doubled since 1980 *Increase in population in Ocean City and surrounding areas since 1970* Dense housing developments surround lagoons and canals ### Nutrient increases since mid-1990s (Glibert et al. 2007): - NH₄⁺ has increased ~4x - DON has increased ~2x Glibert et al. 2007 ### Raphidophytes are relatively new members of the phytoplankton - Implicated in large fish kills from July-September 2000 in Delaware Inland Bays - First documented in Maryland 2001 - Annual blooms since 2000 - Species include: - Heterosigma akashiwo - Chattonella subsalsa - C. cf. verruculosa - Fibrocapsa japonica ### What factors are enabling raphidophyte blooms in these lagoons? Increased nutrients or changing nutrient composition? Allelopathy? # Does increasing eutrophication drive raphidophyte blooms in Maryland lagoons? - Pigment record shows C. cf. verruculosa most frequently in Newport Bay - Reports of other raphidophyte species by state agencies: Saint Martin River, Ayers Creek, Trappe Creek - * Both of these areas are classified as in poor, or very poor estuarine health. # H. akashiwo was grown in turbidostat culture - H. akashiwo grown on enriched Indian River Seawater - grown at 100 and 200 µmol photons m⁻² s⁻¹ - nutrient delivery ceased ~12 hours before initiation of experiment #### Experimental Design - ¹⁵N addition of NH₄+, NO₃-, and urea - 0.1, 0.5, 1, 5, 25 μmol addition - Sampling at 1, 10, 30 minutes - Total uptake - Trichloroacetic acid addition - Total N uptake and incorporation into protein measured by mass spectrometry ### N uptake by *H. akashiwo* at 200 µmol photons m⁻²sec⁻¹ - The ratio V: μ_{max} - $NH_{4}^{+} > NO_{3}^{-} > urea$ - NO₃- uptake is >2x urea uptake # N uptake by *H. akashiwo* at 100 µmol photons m⁻² sec⁻¹ - •Relative to 200 μ mol, V_{max} : μ_{max} for - •NH₄+ is ~2x that of higher light level - •NO₃- decreased slightly - Urea is ~2x greater #### Can *H. akashiwo* meet growth demands on all substrates? - Uptake exceeds growth for NH₄⁺ and NO₃⁻ regardless of light intensity - Urea uptake may support growth at 100 µmol light level, but not at 200 µmol | | L100 | L200 | |-----------------|------|------| | NH ₄ | 6.19 | 3.15 | | NO_3^{-1} | 1.3 | 1.94 | | urea | 1.56 | 0.26 | Comparison of V_{max} normalized to μ_{max} after 30 minute incubation at both light intensities. ### What nitrogen forms does *H. akashiwo* encounter in coastal lagoons? - Rapid uptake of NH₄+ when available - *H. akashiwo* is operating near V_{max} for urea at both light intensities - •NO₃ uptake is not saturated in *H. akashiwo* at ambient conditions in coastal lagoons ### What nitrogen forms does *H. akashiwo* encounter in coastal lagoons? NH₄⁺ is significantly elevated DON increases sharply in July #### Which Nitrogen Forms are Available when Raphidophytes Form Blooms? NO₃- is not a dominant form ### DON Concentrations are Increasing Annually In fact, it has doubled! ### Summary of Uptake and Growth Demands in *H. akashiwo* - •100 µmol photons m⁻² sec⁻¹: - -H. akashiwo can meet growth demands on NH₄⁺, NO₃⁻, and urea - 200 µmol photons m⁻² sec⁻¹: - H. akashiwo can meet growth demands for N on NH₄⁺ and NO₃⁻ # H. akashiwo in Maryland coastal lagoons H. akashiwo is well suited to take advantage of increasing eutrophication in these lagoonal embayments #### Future questions: Allelopathy - Experiments to demonstrate allelopathy towards - Phytoplankton - Microzooplankton Chattonella cf. verruculosa Fibrocapsa japonica Heterosigma akashiwo Chattonella subsalsa #### Acknowledgements - Todd Kana - Carmelo Tomas - Jeff Alexander - Lois Lane - Joanna Woerner #### Comparison of α over both light levels and between substrates | | L100 | L200 | |-------------|------|-------| | NH4+ | 0.45 | 1.01 | | NO3- | | 1.344 | | <u>urea</u> | 0.45 | 1.037 | ^{*} Normalized to μ_{max}