

Raphidophytes in Maryland and Delaware

Maryland northern coastal lagoons are eutrophic systems

- Classified as highly susceptible to eutrophication
 (Bricker et al. 1999, 2007)
 - Public Landing, MD is associated with annual brown tide blooms

- Extensive poultry farming and agriculture within watershed
- Shallow poorly flushed bays

Human population has doubled since 1980

Increase in population in Ocean City and surrounding areas since 1970

Dense housing developments surround lagoons and canals

Nutrient increases since mid-1990s (Glibert et al. 2007):

- NH₄⁺ has increased ~4x
- DON has increased ~2x

Glibert et al. 2007

Raphidophytes are relatively new members of the phytoplankton

- Implicated in large fish kills from July-September 2000 in Delaware Inland Bays
- First documented in Maryland 2001
- Annual blooms since 2000
- Species include:
 - Heterosigma akashiwo
 - Chattonella subsalsa
 - C. cf. verruculosa
 - Fibrocapsa japonica

What factors are enabling raphidophyte blooms in these lagoons?

Increased nutrients or changing nutrient composition?

Allelopathy?

Does increasing eutrophication drive raphidophyte blooms in Maryland lagoons?

- Pigment record shows C. cf. verruculosa most frequently in Newport Bay
- Reports of other raphidophyte species by state agencies: Saint Martin River, Ayers Creek, Trappe Creek
 - * Both of these areas are classified as in poor, or very poor estuarine health.

H. akashiwo was grown in turbidostat culture

- H. akashiwo grown on enriched Indian River Seawater
 - grown at 100 and 200 µmol photons m⁻² s⁻¹
 - nutrient delivery ceased ~12 hours before initiation of experiment

Experimental Design

- ¹⁵N addition of NH₄+, NO₃-, and urea
 - 0.1, 0.5, 1, 5, 25 μmol addition
- Sampling at 1, 10, 30 minutes
 - Total uptake
 - Trichloroacetic acid addition
 - Total N uptake and incorporation into protein measured by mass spectrometry

N uptake by *H. akashiwo* at 200 µmol photons m⁻²sec⁻¹

- The ratio V: μ_{max}
 - $NH_{4}^{+} > NO_{3}^{-} > urea$
 - NO₃- uptake is >2x urea uptake

N uptake by *H. akashiwo* at 100 µmol photons m⁻² sec⁻¹

- •Relative to 200 μ mol, V_{max} : μ_{max} for
 - •NH₄+ is ~2x that of higher light level
 - •NO₃- decreased slightly
 - Urea is ~2x greater

Can *H. akashiwo* meet growth demands on all substrates?

- Uptake exceeds growth for NH₄⁺ and NO₃⁻ regardless of light intensity
- Urea uptake may support growth at 100 µmol light level, but not at 200 µmol

	L100	L200
NH ₄	6.19	3.15
NO_3^{-1}	1.3	1.94
urea	1.56	0.26

Comparison of V_{max} normalized to μ_{max} after 30 minute incubation at both light intensities.

What nitrogen forms does *H. akashiwo* encounter in coastal lagoons?

- Rapid uptake of NH₄+ when available
- *H. akashiwo* is operating near V_{max} for urea at both light intensities
- •NO₃ uptake is not saturated in *H. akashiwo* at ambient conditions in coastal lagoons

What nitrogen forms does *H. akashiwo* encounter in coastal lagoons?

NH₄⁺ is significantly elevated

 DON increases sharply in July

Which Nitrogen Forms are Available when Raphidophytes Form Blooms?

NO₃- is not a dominant form

DON Concentrations are Increasing Annually

In fact, it has doubled!

Summary of Uptake and Growth Demands in *H. akashiwo*

- •100 µmol photons m⁻² sec⁻¹:
 - -H. akashiwo can meet growth demands on NH₄⁺, NO₃⁻, and urea

- 200 µmol photons m⁻² sec⁻¹:
 - H. akashiwo can meet growth demands for N on NH₄⁺ and NO₃⁻

H. akashiwo in Maryland coastal lagoons

 H. akashiwo is well suited to take advantage of increasing eutrophication in these lagoonal embayments

Future questions: Allelopathy

- Experiments to demonstrate allelopathy towards
 - Phytoplankton
 - Microzooplankton

Chattonella cf. verruculosa

Fibrocapsa japonica

Heterosigma akashiwo

Chattonella subsalsa

Acknowledgements

- Todd Kana
- Carmelo Tomas
- Jeff Alexander
- Lois Lane
- Joanna Woerner

Comparison of α over both light levels and between substrates

	L100	L200
NH4+	0.45	1.01
NO3-		1.344
<u>urea</u>	0.45	1.037

^{*} Normalized to μ_{max}