16th PICES Annual Meeting (S-5)

Relationship between Pacific cod (Gadus macrocephalus) catch and environmental factors in the East/Japan Sea

PACIFIC COD DISTRIBUTION

Pacific cod catch (1950-2005)

- Pacific cod migrate from nursery ground to winter spawning area every year. In the southern East/Japan Sea, three spawning areas are identified.
- Peak spawning period → January

Proportion of maturation status for female *G. macrocephalus*

(Cha, 2007, pers. comm.)

Monthly gonadosomatic indices (GSI) of female *G. macrocephalus*

Maturation curve for female *G. macrocephalus*, and size at age from Choi (2007).

(Cha, 2007, pers. comm.)

Objective

 To compare the relationship between cod populations and environmental (climate/oceanographic) conditions in the Southern East/Japan Sea

Materials & Methods

Cod catch data

- Eastern Korea (EKOcod) Gangwon, Gyeongbuk, Gyeongnam and Busan (1970-2006) → from Korean fisheries yearbook
- Daily radio report on fishing location and catch from fishing vessels to Fisheries Cooperative during from 2001 to 2006
- Western Honshu (WHScod) Aomori, Akita, Yamagata, Niigata, Toyama, Ishikawa and southern area (1964 – 2005) → from Annual Report of Catch Statistics on Fishery and Aquaculture in Japan

Environmental data

XClimate index

Arctic Oscillation Index (1950-2006)

- Seawater temperature at spawning area (1968-2005)
- Zooplankton in nursery/feeding area (1967-2002)

Seawater temperature data

→ Spawning ground of Pacific cod in the Southern East/Japan Sea

Zooplankton data

→ Nursery/feeding grounds of Pacific cod in Korea

124°00′E

Western Honshu cod catch (WHScod)

SEJScod with Arctic oscillation index

Negative correlation (r = -0.451) between SEJScod and Arctic Oscillation Index (winter) with a time-lag of 4 years

CuSum Cod

WHScod with seawater temperature

Negative correlation between Ishikawa cod catch and NOTO winter seawater temp. (75m) with a time-lag of 5 years

Negative correlation (r = -0.449) between Yamagata catch and AWA. seawater temperature (75m, April) with a time-lag of 5 years

Negative correlation (r = -0.496) between Niigata catch and AWA seawater temperature (75m, April) with a time-lag of 5 years

 What is an optimum environmental condition for Pacific cod in Korean waters? Cod distribution in Korean waters (2004)

PSU ℃	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	10 - 12
33.6 - 33.8		51 (n=1)	240 ± 87 (n=6)	1303 ± 277 (n=6)		
33.8 - 34.0	4448 ± 485 (n=18)	48594 ± 1607 (n=80)	3057 ± 541 (n=10)	1885 ± 109 (n=16)		
34.0 - 34.2	17702 ± 466 (n=62)	65388 ± 1230 (n=106)	6119 ± 340 (n=19)	6754 ± 509 (n=19)	12305 ± 2740 (n=10)	770 ± 56 (n=10)
34.2 - 34.4	73 (n=1)				500 (n=1)	2806 ± 332 (n=11)
34.4 - 34.6		193 ± 94 (n=2)				

Seasonal distribution of cod catch in temperature range

EKOcod with seawater temperature

Negative correlation (r = -0.404) between EKOcod and JB seawater temperature (Feb. 75 m) with a time-lag of 5 years

Negative correlation (r = -0.422) between (Busan + Gyeongnam cod) and JB seawater temperature (Feb. 75 m) with a time-lag of 5 years

EKOcod with zooplankton

Positive correlation (r = 0.452) between EKOcod and zooplankton biomass (June) with a time-lag of 5 years

Positive correlation (r = 0.421) between EKOcod and Euphausiid (Feb.) with a time-lag of 4 years

- Pacific cod appeared through a year along the eastern coast of the Korean Peninsula, and most P. cod were caught in seawater temperature range of 1-4°C and salinity range of 33.8-34.2 psu.
- They mature sexually at age of 5, and peak spawning happened in January.
- The cross correlation function (CCF) analysis showed that both cod catches in Korea and Japan were also significant correlated with February temperature at 75m in the spawning ground with a time-lag of 5 years.
- Also, cod catch had a significant correlation with June zooplankton biomass with a time-lag of 5 years (r = 0.452) in the coastal area off the eastern Korea.
- The combined catch from southern East/Japan Sea indicated that there was a negative correlation between SEJScod catch and Arctic Oscillation index (AOI), and that the highest correlation (r=-0.451) was shown with a time-lag of 4years.

Thank You ~!

