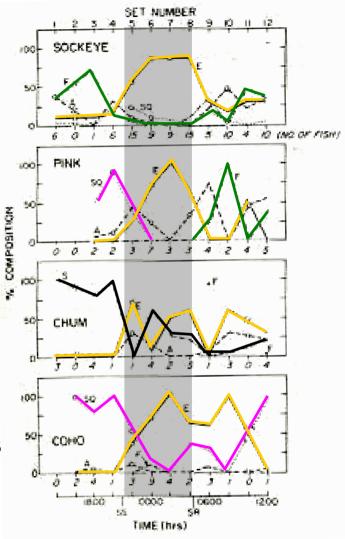
Are Foraging Habits of Pacific Salmon Based on Food Habits?

Ikue Mio, Hideaki Kudo, and Masahide Kaeriyama Graduate School of Fisheries Sciences, Hokkaido University mioikue1@fish.hokudai.ac.jp

INTRODUCTION

Feeding pattern of Pacific salmon

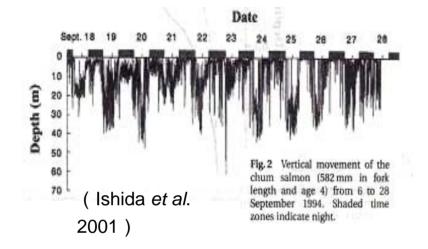
(LeBrasseur 1966; Kanno and Hamai 1971, etc.)


Coho	• • •	Nekton
Sockeye]	Nekton-Zooplankton
Pink	J	
Chum	• • •	Zooplankton

Dial variation in the feeding habits

(Pearcy et al. 1984; Davis et al. 2000; Volkov and Kosenok 2007)

Coho	Daytime : Large prey
Sockeye $\succ \cdot$ ·	• (e.g., Squid)
Pink	Nighttime : Luminous animals
	(e.g., euphusiids)


Chum · · · Unclear

E: euphusiids, SQ: squids, F: fish, S: salps, (Pearcy et al. 1984)

Dial vertical movement (DVM) of Pacific salmon

(Manzer 1964; Mathidori 1968; Ishida et al. 2001; Walker et al. 2000; Walker et al. 2007)

Daytime : $0 \sim 40m \text{ or } 60m$ Nighttime : $0 \sim 10m$

- They move vertically in both layers
- Chum move vertically wider than other species.

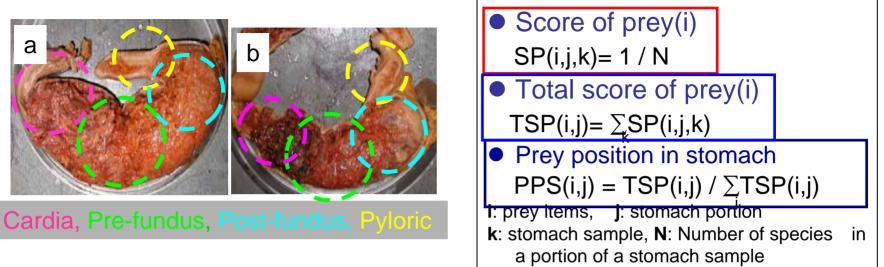
OBJECT

Using stomach-content analysis,

we resolved foraging habits of Pacific salmon, especially the relationship of vertical distribution between salmon and their prey organisms.

MATERIALS AND METHODS

Sampling and Stomach Content Analysis


man in the second	Numb	per of sa	amples
60N		Pink	Chum
	St. 1	0	18
50N St.1	2	0	25
	3	0	10
40N 68 3 7	4	0	18
30N	5	8	0
Q	6	20	0
120E 140E 160E 180 160W 140W	7	30	0
 Sampling period 	8	25	0

- St. 1 ~ 4: 2006, June and July, St. 5 ~ 8: 2007, May and June.
- Gear

Drifting gillnet (Set: before sunset, Haul: after sunrise), hook/line on the t/v Oshoro-maru

Stomach content analysis Prey items were classified to the lowest identifiable taxon, and recorded the position and the digestion level in the stomach.

Prey position in stomach

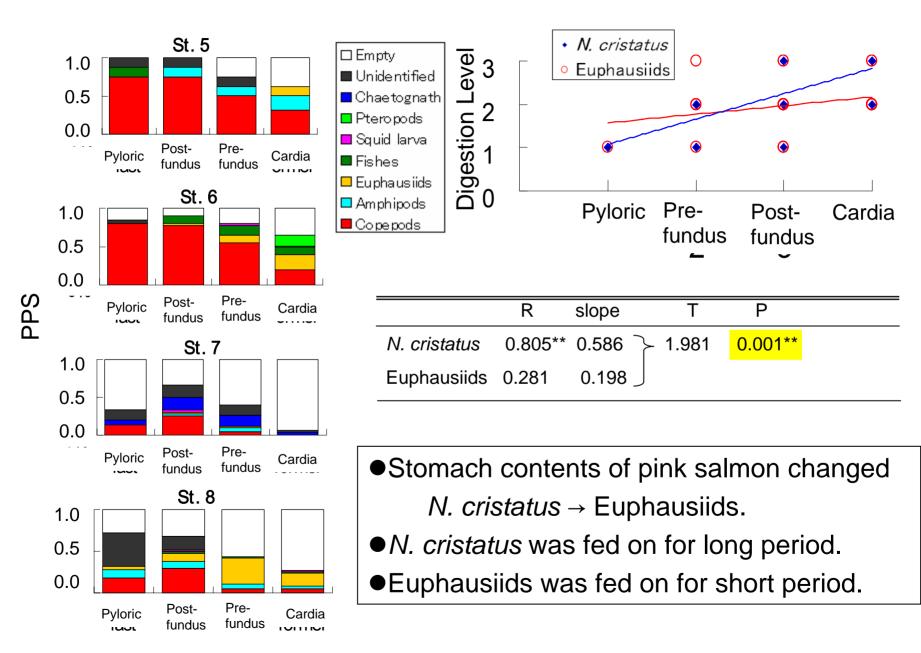

SP<u>(i,j,k)</u>

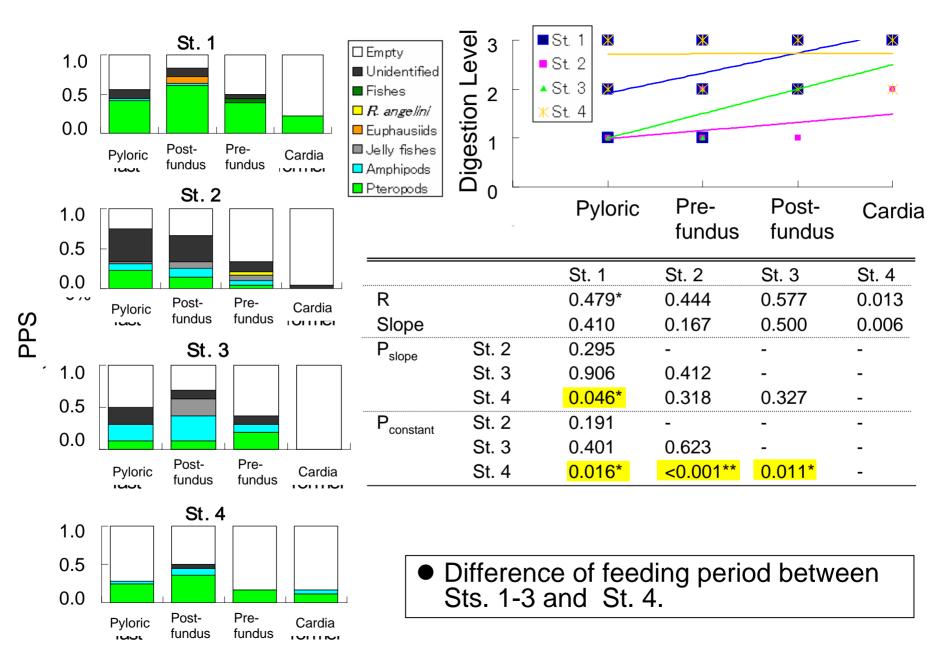
<u>(I,J,K)</u>							
Pyloric		Post-fundus		Pre-fundus		Cardia	
N. crista	tus (1)	N. cristatus (1)		<i>N. cristatus</i> (0.5) euphausiids (0.5)		euphausiids (1)	
N. crista	tus <mark>(1</mark>)	<i>N. cristatus</i> (0.5) squids larva (0.5)		N. cristatus (1)		amphipods (1)	
TSP(i,j), ∑TSP(i,j)							
	Pylori	c Post-fundus	Pre	-fundus	Cardia	PPS(<i>N. cristatus,</i> Pyloric) = 1	
cristatus	(2)	(1.5)		1.5			
hausiids	\smile	\asymp		0.5	1	PPS(N. cristatus, Post-fundus)=0.75	
iids larva		(0.5)				PPS(Squids larva, Post-fundus)=0.25	
ohipods		$\underline{\sim}$			1		
SP(i, j)	2	2		2	2	• • •	
	Pyloric <i>N. crista</i> <i>N. crista</i> <i>N. crista</i> <i>P</i> (i,j), ∑1 ristatus hausiids hausiids ids larva phipods	Pyloric <i>N. cristatus</i> (1) <i>N. cristatus</i> (1) P(i,j), ∑TSP(i,j) Pyloric ristatus 2 hausiids ids larva phipods	PyloricPost-fundusN. cristatus (1)N. cristatus (1)N. cristatus (1)N. cristatus (0.5)N. cristatus (1)N. cristatus (0.5)P(i,j), \sum TSP(i,j)PyloricPost-funduscristatus21.5hausiids0.5ohipods0.5	PyloricPost-fundusN. cristatus (1)N. cristatus (1)N. cristatus (1)N. cristatus (0.5) squids larva (0.5)P(i,j), ∑TSP(i,j)PyloricPost-fundusPrestatus21.5hausiids ids larva0.5	PyloricPost-fundusPre-fundusN. cristatus (1)N. cristatus (1)N. cristatus (1)N. cristatus (1)N. cristatus (0.5)N. cristatus (0.5)N. cristatus (1)N. cristatus (0.5)N. cristatus (0.5)P(i,j), \sum TSP(i,j)PyloricPost-fundusPyloricPost-fundusPre-funduscristatus21.51.5chausiids0.50.5ohipods0.50.5	PyloricPost-fundusPre-fundusN. cristatus (1)N. cristatus (1)N. cristatus (0.5)N. cristatus (1)N. cristatus (0.5)N. cristatus (0.5)N. cristatus (1)N. cristatus (0.5)N. cristatus (1)P(i,j), \sum TSP(i,j)PyloricPost-fundusPre-fundusPyloricPost-fundusPre-fundusCardiacristatus21.51.5hausiids0.51ohipods11	

Digestion level

Digestion level

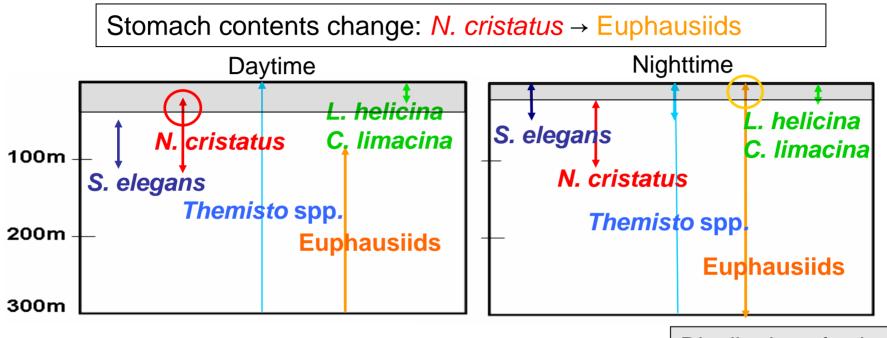
- 1: Sample can't be distinguished as individual because of their shell or muscle broken
- 2: Semi-digested chitinous shell or muscle present. They can be counted number but have difficulty to classify speacies.
- 3: Complete chitinous shell or muscle present. It is easy to classify species.





RESULTS

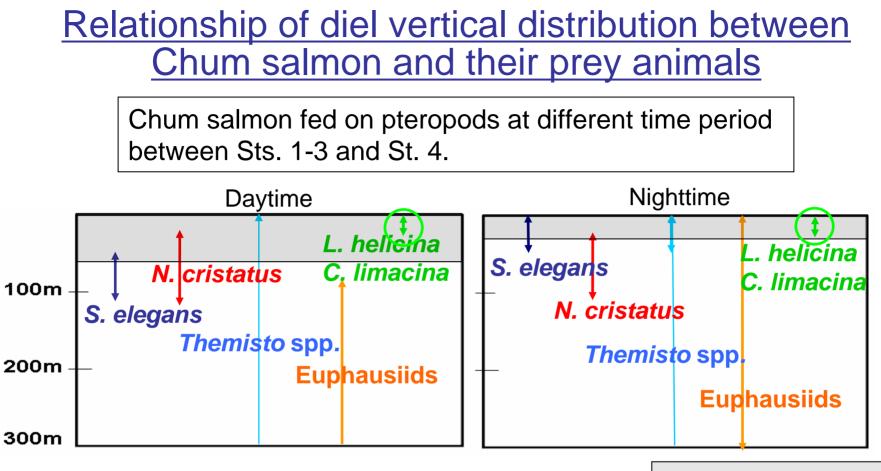
Stomach content position of pink salmon



Stomach content of chum salmon

DISCUSSION

Relationship of diel vertical distribution between pink salmon and their prey animals



Distribution of salmon

Feeding activity rise : "sunrise→midday", "sunset→early-darkness"

(Volkov and Kosenok 2007)

Pink salmon fed on *N. cristatus* during "sunrise \rightarrow midday" in the deeper layer and euphausiids during "sunset \rightarrow early-darkness" in the surface layer.

Distribution of salmon

Feeding activity rise : "sunrise→midday" and "sunset→early-darkness"

(Volkov and Kosenok 2007)

Chum salmon fed on pteropods during both "sunrise \rightarrow midday" and "sunset \rightarrow early-darkness" in the surface layer.

Relationship between distribution density of prey animals and digestion level of Pacific salmon

•Digestion level of *N. cristatus* fed on by pink salmon was changing.

 Digestion level of euphausiids fed on by pink salmon was not changing clearly.

> *N. cristatus* : low-density distribution Euphausiids : high-density distribution (Takeuti 1972)

Pink salmon fed on *N. cristatus* for long period.
Pink salmon fed on euphausiids for short period.

Digestion level in each stomach portion describes distribution density of prey animals.

Conclusion

Pink salmon are more opportunistic feeder than chum salmon. Chum salmon forage wide-vertically for food.

- Pink salmon feeding:
 - *N. cristatus*: "sunrise \rightarrow midday" in the deeper layer
 - Euphausiids: "sunset \rightarrow early-darkness" in the surface layer.
- Chum salmon feeding:
 - Pteropods: "sunrise→midday" and "sunset→early-darkness" in surface layer.
- Chum move vertically wider than other species.(Volkov and Kosenok 2007)