Fishery interaction and availability of Atka mackerel prey for Steller Sea lions: Results from local abundance and movement study of Atka mackerel

S. F. McDermott¹, E.A. Logerwell, I. Ortiz, and V. Haist¹

¹Alaska Fisheries Science Center

² Northwest Fisheries Science Center National Marine Fisheries Service

Overview

- Background
- Research goal
- Atka mackerel tagging study
- Small Scale Food web model (Libby Logerwell)
- Conclusions

Background information

- Atka mackerel (*Pleurogrammus monopterygius*) is one of the most abundant groundfish in the Aleutian Island area (2004 Biomass ~ 336, 345mt, 2003 Fishery landings ~58,585 mt)
- Important component in the ecosystem
 - Prey: Euphasiids, Copepods, Myctophids
 - Predators: Steller Sea lions, P. Cod, Halibut, Arrowtooth fl.
- Patchy distribution on large and small scales

Atka mackerel and Steller Sea lions

- Western stock of Steller Sea lion was declared endangered in 1997
- **△** Trawl exclusion zones established around rookeries, haulouts
- **△** Atka mackerel prevalent in diet (78% occurrence in the Aleutians)

Research goal

- Study efficacy of trawl exclusion zones
 (TEZs) in preserving prey abundance for
 Steller Sea lions
 - Estimate local abundance and movement in and out of the TEZs
 - Small-scale food web model

Tagging as means of abundance estimation

- Local abundance and localized movement can be estimated (patchiness not as problematic as in other survey methods)
- Tag recovery pays partly for research effort
- Fishery can be used in tag recovery (cost-effective)

• Assumptions:

- Population is closed within study area (no immigration or emigration)
- Tagged fish mix randomly with untagged fish
- All fish have same recovery probability
- Tag shedding, tag mortality, tag reporting rates can be estimated with auxiliary data

Methods

- 1999-2006
 - released over 75,000 tagged fish
- 2006 tag release and recovery effort cooperative funding with industry
- Model
 - Integrated tagging model using maximum likelihood (Hilborn 1990)
 - Estimates
 - N (population size)
 - p (probability of moving)
 - Tag mortality
 - Tag reporting rate
 - Tag loss

Catch...

Tag...

Release...

Recapture

Recapture

Abundance estimates

Movement rate

Biomass in all areas combined

Small-scale food web model

- Is there enough Atka mackerel production inside Trawl Exclusion Zones (TEZs) to support Steller sea lions?
- Construct a food web model for each TEZ

Small-scale food web model

Steller sea lions

Fish predators:
Pollock
Halibut
Pacific cod
Arrowtooth Flounder
Skates

Atka mackerel Production

Small-scale food web model Data

- Atka mackerel
 - Biomass from tag model
 - Production rate (P/B) from Aleutian EcoPath model
- Steller sea lions
 - Biomass from derived counts, age-structure, sex ratio, pregnancy rate, and weight-at-age
 - Diet from scat collections
 - Consumption rate (Q/B) from Aleutian EcoPath model
- Fish predators
 - Biomass from trawl survey
 - Diet from trawl survey collections
 - Consumption rate (Q/B) from Aleutian EcoPath model

Data Details

Data	Year(s)	Season(s)	Sample size	Source
Survey strata biomass	2002	Summer	119 hauls	AFSC
3-degree area CPUE	2002	Summer	72 hauls	AFSC
Fish predator diets	2000- 2006	Summer	Pollock349 stomachsArrowtooth Flounder391Halibut115Pacific cod317Skates, 1997-200626	AFSC
Atka mackerel biomass	2002	Summer	24,999 tagged fish released 58 tagged fish recovered	McDermott
Steller sea lion biomass	1977, 2000			Fay (UW) Holmes, Fritz (NMML)
Steller sea lion diet	1990- 1999	Summer (mostly)	231 scats	NMML

Results - "current" sea lion population (2002)

Proportion of Atka mackerel production consumed

Results – "recovered" sea lion population (1977)

Proportion of Atka mackerel production consumed

Conclusions

Efficacy of trawl exclusion zones at mitigating competition between sea lions and commercial fisheries varies geographically

- •Do fish move from inside to outside?
 - Small movement at Seguam and Tanaga and Kiska
 - Large movement at Amchitka
- •What is the abundance of fish inside?
 - Large biomass at Seguam, Tanaga, and Kiska
 - Small biomass at Amchitka
 - Food web model indicates that there is enough Atka mackerel production for sea lions at Seguam (current and "recovered")

Acknowledgements

- Atka mackerel tagging study:
 - North Pacific Fisheries Foundation
 - Crew of the Seafisher
 - Crew of the Pacific Explorer
 - Kimberly Rand, Dan Cooper, all AFSC scientists collecting data in the field
 - Cascade Fishing: Phil Dang, Tim Meintz,
 Nancy Kercheval