Variability of vertical diffusivity at the western gap of the Bussol' Strait

Masahiro Yagi and Ichiro Yasuda (Ocean Research Institute, Univ Tokyo)

Introduction - Kuril Straits

Strong diurnal tide

(Kowalik and Polyakov, 1998)

Complex topography

Strong vertical mixing

(Nakamura et al., 2000; Nakamura and Awaji, 2004)

- The impact of strong vertical mixing in Kuril straits
 - The formation of NPIW (Nakamura and Awaji, 2004; Yasuda, 2004)
 - Southward intrusion of Oyashio (Tatebe and Yasuda, 2004)
 - Bidecadal variability in northwestern Pacific and Okhotsk sea (Osafune and Yasuda, 2006; Yasuda et al., 2006)

But no direct observation of the dissipation rate ϵ and the vertical diffusivity K_{ρ}

Introduction - Bussol' Strait

■ Suggestion of strong vertical mixing (Kp~200cm²/s)

(Nakamura et al., 2000; Nakamura and Awaji, 2004)

Purpose

 Estimation of dissipation rate and vertical diffusivity in Bussol' strait by using observation data

To achieve this,

- 1. Direct measurement of turbulence using microstructure profiler
- 2. Indirect estimation from density inversion

(Thorpe, 1977; Galbraith and Kelley, 1996)

3. Compare the indirect estimate with the direct measurements and check the validity to allow the estimate using standard CTD data.

inversion

(Thorpe, 1977; Galbraith and Kelly, 1996)

•Ozmidov scale L_o

$$L_o = \left(\frac{\varepsilon}{N^3}\right)^{1/2}$$

Empirically, it is shown that L_0 can be proportional to L_T . The examples of its proportional coefficient are as

follows 0.8 (Dillon, 1982), 0.95 (Ferron et al. 1998), 1.06 (Stansfield et al. 2001) $0.25L_O < L_T < 4L_O$ (Wesson and Gregg 1994)

If we assume that $L_0 = cL_T$, ε is represented as follow.

$$\varepsilon = c^2 L_T^2 N^3$$

If c is determined, ϵ can be derived from density profiles.

Observation

The information of data

VMP 2000 and CTD+LADCP are repeated alternately.

VMP2000 (Rockland Scientific International Inc.)

Features

- Depth rating 2000m
- 2 shear probes -> micro scale shear
- Pressure sensor
- SBE-3F & SBE-4C -> CTD data (density profile)
- Tether cable

Result 1

(1)

Pressure (dBar)

500

1000

1500

00:00

06:00

12:00

Time

06:00

12:00 Time 18:00

00:00

Isopycnal depth changes more than 100m

00:00

18:00

- Diurnal change of current is predominant
- Amplitude of V is large in a layer deeper than 500m
 (Maximum amplitude of diurnal tide was 1.3m/s at 1100m)

1500:00

26.4

26.2

Result 2

- $K_{o(sh)} > 100 cm^2/s$ in some parts
- Simple average of directly measured K_{ρ(sh)} is 21cm²/s

Indirect estimation of K_{ρ} from density inversion

(2)

(3)

9/12

Scatter plot between L_T and L_O

- L_T is derived from density inversion from CTD profile
- L_o is derived from direct measured dissipation rate
- L_T is proportional to L_O (correlation coefficient is 0.64)
- The proportional coefficient is 0.39 by least square fitting $L_0^2N_3 = 0.39^2L_T^2N^3$, $K_{\rho(GK)} = 0.2*0.39^2L_T^2N$

Indirect estimation over full depth with CTD profiles

- Simple average of K_o is 288cm²/s
- Large K_ρ were observed in a layer deeper than 500m
 Large diffusivity corresponds to depths with large vertical shear of diurnal tidal flow.

Summary

- 1 day repeated turbulence observation at the western gap of Bussol' strait where the amplitude of diurnal tidal flow reached over 1m/s
 - Direct observation down to 600m shows K_ρ reached O(10²)cm²/s in some parts and its simple average is 21cm²/s
 - From concurrently measured CTD density profile, Thorpe scale L_T is mostly proportional to Ozmidov scale L_O and $L_O = 0.39L_T$
 - Using this linear relation, full depth K_o is estimated
 - Κ_ρ was large at depths greater than 500m and reached O(10³)cm²/s
 - 1 day full depth average was 288cm²/s
- This diffusivity was as strong as expected from numerical model (Nakamura and Awaji, 2004).

The comparison between $N_{\rho(sh)}$ and

 $K_{\rho(GK)}$

- Κ_{ρ(sh)} (directly measured
- Κ_{ρ(GK)}
 (indirectly estimated

- K_{ρ(GK)} mostly corresponds to K_{ρ(sh)}
- Simple average in the depth that both data exist,

$$K_{\rho(GK)} = 14 \text{ cm}^2/\text{s}, \quad K_{\rho(sh)} = 18 \text{ cm}^2/\text{s}$$