COASTAL TRAPPED DIURNAL TIDAL WAVES OBSERVED ALONG THE SOUTH KURIL ISLANDS

Richard Thomson (IOS) Georgy V. Shevchenko (SakhNIRO) Alexander Rabinovich (IORAS, IOS)

 IOS: Institute of Ocean Sciences, Fisheries and Oceans, Sidney, BC, CANADA
 SakhNIRO: Sakhalin Research Institute of Fisheries and Oceanography, Yuzhno-Sakhalinsk, RUSSIA
 IORAS: Institute of Oceanology, Russian Academy of Sciences, Moscow, RUSSIA

Observations of diurnal continental shelf waves

Simulated currents (from *Nakamura et al.* [2000])

Efimov and Rabinovich, 1980; Kovalev and Rabinovich, 1980

Physics and properties

Gravity waves: Kelvin, Poincare (leaky), edge (Stokes)

Quasigeostrophic (gyroscopic) waves: *continental shelf waves*

Potential vorticity conservation

 $\frac{\zeta + f}{h} \to constant$

CSW: Robinson, 1964 Diurnal (tidal) CSW: Cartwright, 1969; Rabinovich and Efimov, 1980; Crawford and Thomson, 1982, 1984; Daifuku and Beardsley, 1983; etc.

Kelvin wave: z = 30 cm, U = 3 cm/s CSW: z = 3 cm, U = 30 cm/s

Drifter observations of diurnal coastal trapped waves near the Kuril Islands

Ohshima et al., 2005

15-m drifters

Rabinovich and Thomson, 2001

Numerical modeling of coastal trapped waves for the Pacific and Okhotsk shelves

Modes

ADCP and RCM observations of currents near the South Kuril Islands

(1) Olga: Sontec Argonaut 4.08.2004 - 03.07.2005 T = 334 d; h = 35 m (200) (2) Shalila: Sontec Argonaut 14.05.2005 - 23.10.2004 T = 168 d; h = 20 m (22) (3) Leya-1: Sontec Argonaut 28.02.2003 - 19.11.2003T = 265 d; h = 30 m (110)

(4) Leya-2: ADP, 15 depths
(8, 16, 24,...,120 m)
10.06.2003 - 15.10.2003
T = 127 d

(5) Leya-3: ADP, 15 depths
(8, 16, 24,...,120 m)
11.12.2004 30.06.2005
T = 200 d

Observations

Leya-2 (80 m)

Leya-3 (80 m)

(1) Strong dominance of diurnal tidal currents (from top to bottom)
 (2) Significant fortnightly cycle
 (3) Anisotrophic character of tidal currents
 (4) Periods of "suppressed tides"

Leya-1 (30 m): NW shelf of Urup Island Wavelet *f-t* diagrams

Tidal ellipses (integrated over the observational period)

Diurnal (K1, O1) currents are:

- Strongly dominant
- Almost rectilinear
- Steady

Shalila (20 m): Bottom currents on the shelf of Tanfilieva Island (Habomai Is)

Wavelet *f-t* diagrams

Leya-2: ADP currents in Ekateriny Strait (2003)

1000

Leya-2: ADP currents in Ekateriny Strait (2003) Wavelet *f-t* diagrams

Leya-2: ADP currents in Ekateriny Strait (2003)

Time-vertical changes of tidal energy

Leya-2: ADP currents in Ekateriny Strait (2003) Temperature and salinity cross-sections

June

September

Leya-3: ADP currents in Ekateriny Strait (2004-2005) Wavelet *f-t* diagrams

Summary

- Long-term observations of currents near the South Kuril Islands reveal strong diurnal tidal currents, which dominate all other types of motions in this region.
- The observations and results are in good agreement with drifter observations and numerical models in this region and support the conclusion that diurnal currents in this region are associated with coastal trapped waves.
- Diurnal tidal currents are close to uniform in the vertical (with only 20-30% variation) and relatively stable in time, but...

- There are periods of "tidal suppression" (onetwo months duration), which are highly correlated with changes in stratification and mean flow.
- However the exact mechanism for this "suppression" is still a puzzle...

La Fine