Productivity and structure of lower trophic level communities and carbon flux in the Ulleung Basin in the JES in the summer of 2005

Sinjae Yoo, Man-Sik Choi*, Sang-Hwa Choi, Jung-Ho Hyun, Hyung-Ku Kang, Dongseon Kim, Hyun-cheol Kim, Chang Rae Lee, Jeong-Ah Lee, Taehee Lee, Jae Hoon Noh, Chang-Woong Shin, and Eun Jin Yang

<u>sjyoo@kordi.re.kr</u>

KORDI and Chungnam Univ* South Korea

Outline

Backgrounds
Physical setting
Coastal upwelling
Biological structure
Carbon fluxes
Summary

Ulleung Basin

- Tsushima current
- North Korean Cold Current
- Eddies
 - Anti-cyclonic eddies are formed and stay in the Ulleung Basin for more than one or two years.
- Seasonal stratification
 - Phytoplankton density is lowest in summer showing bimodal annual cycles
- Coastal Upwelling
 - During summers, southwesterly wind induces coastal upwelling along the Korean penisula.

Question

How the eddy and other hydrographic features shape the lower trophic level and influence the carbon fluxes in the basin in summer?

In-situ measurements

KORDI **한국해양연구원**

Methods and materials

- Physics: CTD, ADCP
- Chemistry: Carbon dioxide, nutrients
- ✤ Biolo
 - Phytoplankton: PP, HPLC pigments, picoplankton
 - Bacteria: biomass, production
 - Microzooplankton: abundance, grazing
 - Mesozooplankton: abundance, fecal pellet analysis
- Sinking flux
 - Drifting sediment traps (at 2 locations for 24 hours each)
- Incubation chamber
 - Refer to the poster presentation by Lee & Kim (this meeting)

The feature of CHL and SST in July 2005

KORDI रुन्नजित्र

D2

D3

D4

Phytoplankton composition by HPLC pigements (Chemtax)

Phytoplankton composition by HPLC pigements

배양연구원

<u></u>··국해양연구원

Depth-integrated PP

Bacterial cell numbers (x10⁵ cells/ml)

KORDI 한국해양연구원

Thymidine Incorparation Rate, pM hr⁻¹ 10 15 20 10 15 20 25 5 10 15 20 25 0 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 Depth (m) **B4-a** ¹⁰⁰ **B6 A1** A2 **B2 B4** 10 15 20 25 0 10 15 20 10 15 20 25 10 15 20 5 10 15 20 25 Depth (m) 100 -100 -**D5 D2 D3 D1 D4** 10 15 20 25 10 15 20 25 15 20 10 15 20 5 10 15 20 25 5 10 15 20 25 Depth (m) 100 -**E9** E11 **E1 E3** E5 **E7**

KORDI रुत्रमेश्रित्रस्य

Grazing impacts of microzooplankton on phytoplankton

Size-fractionated mesozooplankton biomass (D line)

High density of amphipod in the trap sample !!

Mesozooplankton composition

Export production - sediment trap

	Depth	Mass flux	POC	POC flux	C/N
	(m)	(mgm ⁻² d ⁻¹)	(%)	(mgm ⁻² d ⁻¹)	
D2	50	361	31	114	7.1
	100	98	37	36	6.1
	200	2050	48	977	7.4

Export production(100 m) = 13.1 gC m⁻² yr⁻¹

	Depth	Mass flux	POC	POC flux	C/N
D4	(m)	(mgm ⁻² d ⁻¹)	(%)	(mgm ⁻² d ⁻¹)	
	50	222	58	129	9.1
	100	121	37	44	7.6
	200	127	25	31	9.8

Export production(100 m) = 16.1 gC m⁻² yr⁻¹

Summary of observation in 2005 (flux in mg C m⁻² d⁻¹)

Organic carbon cycle in Ulleung Basin

Summary

- Intermittent coastal upwelling influences the phytoplankton communities in the Basin.
- Primary production ranged 281~772 mg C m⁻² d⁻¹ and was lower in the eddy. Within the eddy system, it was higher in the center due to pronounced subsurface chlorophyll maximum.
- Northern area showed higher bacterial abundance and production, which is not explained yet. In most stations, bacterial abundance, chlorophyll, and microzooplankton biomass showed a good relationship.
- Fecal pellet production was higher inside the eddy than that in the periphery which is consistent with PP and the sinking rate measured from a drifting sediment trap.

