

#### **1. Introduction**



The mean structure of the subarctic gyre has been investigated mainly using the climatological data.



The seasonal variation and interannual variation were clarified from the satellite altimetry data

#### 2. Purpose



In this study, we analyzed synoptic data from Argo floats drifting in the subarctic North Pacific from October 2005 to April 2006 to show bimonthly variation in current structure.



#### 3. Method



#### Data in observation period was divided by every two months. Oct-Nov Nov-Dec ..... Mar-Apr

(GODAE : <u>http://www.usgodae.org/cgi-bin/argo\_select.pl</u>)

#### To make the maps



#### To make the maps



Error of density ( $\sigma_{\theta}$ ) on 20db in Nov-Dec 2005



e.g (top) potential density and (bottom) geopotential anomaly  $(m^2/s^2)$  on 20db in Nov-Dec 200

The data( $1^{\circ} \times 1^{\circ}$ ) of every 20db was made between 20db and 1000db.

#### 4. The Result

Variation of Sverdrup transport

Variation of relative geostrophic transport

Variation of vertical current-structure

Estimation of velocity at 1000db by inverse analysis

#### Wind stress curl



Several investigators in the past showed barotropic processe depends on the wind stress that becomes strong in winter is superior.

# **Seasonal variation of Sverdrup transport**



The horizontal distribution of Curl T



# Variation of vertical current-structure

# Zonal-average profile of horizontal velocity in right box





#### Variation of vertical current-structure

# Zonal-average profile of horizontal velocity in right box







#### Comparison with Sverdrup transport



crossing the parallel of 45°N.



On the assumption of the Sverdrup balance, the reference velocity must be changed largely corresponding to the wind stress curl.



#### Estimate of velocity at 1000db by Inverse analysis



The inverse method we adopted is a hybrid of  $\beta$ -spiral and box.

(Ueno and Yasuda, 2003)

## Estimate of velocity at 1000db by Inverse analysis

$$\sum_{i=1}^{4} (v_{i,j,k} + b_{i,j}) S_{i,j,k} q_{i,j,k} = 0$$

$$v_{i,j,k}$$
: Relative velocity referred to 1000db
$$b_{i,j}$$
: Velocity at 1000db
$$S_{i,j,k}$$
: Box area
$$q_{i,j,k}$$
: Density
$$i$$
: Box side number
$$j$$
: Box number
$$k$$
: Density layer number
Box inverse
$$\sigma_{\theta_3}$$
Box

#### $\beta$ -spiral (Ueno and Yasuda, 2003)

$$Wek - \frac{\beta}{f} \int_{Z}^{Zek} (v_j + b_{cv_j}) dz = (u_{j, K} + b_{cu_j}) \frac{\partial Z_{j, K}}{\partial x} + (v_{j, K} + b_{cv_j}) \frac{\partial Z_{j, K}}{\partial y}$$

Vertical velocity at isopycnal surface

#### Horizontal advection of isopycnal



Nov-Dec 2005

Dec-Jan 2005



# Levenburg-Marquartdt analysis (Joice et al.,1986)



We adopted weighting parameters  $10^{4}$ ,  $10^{5}$ ,  $10^{5.75}$ ,  $10^{6}$ , and  $10^{6.25}$  from the box and the  $\beta$ -spiral reation.





#### **Contour line of streamfunction at 20db**





# 5.Summary

- Relative transport referred to 1000db did not change in the observation period.
- The Sverdrup transport changed largely.

• When the Sverudrup transport flowed northward, Velocity field at 1000db shows anticlockwise circulation.

When the Sverudrup transport flowed southward, Velocity field at 1000db shows clockwise being reversed to the surface.

# **Future works**



# Variation

**Comparison with** 

**Transport of western boundary current(Oyashio)** 

Velocity from the surface drifting floats (Intermediate velocities from Argo have much error from our estimation)



# Thank you for your kind attention