Patterns of Recent Sea Level Rise in the East/Japan Sea And Their Ecological implication in the Ulleung Basin

Sok Kuh Kang¹, Josef Cherniawsky ², Michael G.G.Foreman ², Sinje Yoo ¹, Hong Sik Min ¹, Cheol-Ho Kim ¹ and Hyoun-Woo Kang ¹
Korean Ocean Research & Development Institute, Ansan, Seoul, Korea¹
Institute of ocean Sciences, Sidney, B.C., Canada²

> Science Board Symposium, PICES XIV October 3, 2005 Vladivostok, Russia

Content of Presentation

- 1. Research Background
 - -Issues of global sea level rise (GSLR) -SLR study background in the EJS
- 2. Data Analysis
- 3. Results
 - -General SLR features from coastal tide, T/P and thermosteric sea level (TSL)
 - -Long-term (decadal) trend
 - -Eddy contribution to large SLR rate
 - -Deep water warming effect to SLR
- 4. Ecological aspect in relation to eddy activity in UB
- 5. Summary and conclusion

Warming of the World QCevations et al., 2000 and 2005)

- Heat content (1955 to 1998) Increase by 14.5×10²²J (0-3000m)
 Mean temperature increase : 0.037 ℃
- -Global mean temp. increase from 0 to 300m ∶ 0.171 ℃ -Warming rate ∶ 0.2W m⁻²
- →The Pacific Ocean has been warming since 1950s
- → substantial change : 0 to 300m in each ocean (the North Atlantic in depth greater than 1000m)

Yearly heat content anomaly in the upper 300m

The rate of Gobal Sea Level Rise(GSLR) and its cause (Enigma)

What is the rate of 20th Century GSLR?
 0.5–0.7mm/yr or
 1.5–2.0mm/yr ?

2. What is the causes of GSLR? Thermal expansion? Freshwater exports from continents?

□ Cabanes et al.(2001, Science)

Global mean sea level(1955-96)

PSMSL GSLR seems to be overestimated!!! Miller and Douglass (2004) argued this

Antonov et al. (2002, JGR) Spatially averaged (50°S-65°N)5-year running mean

-A decrease in global mean salinity has occurred -This increase of freshwater causes SLR at rate of 1.3±0.5mm/yr

 $\delta h_{eustatic} = (\rho/\Delta\rho) \delta h_{steric} = 36.7 \delta h_{steric} = 1.8 \text{mm/yr}, \text{ Ocean area} = 3.6 \times 10 \text{**8km}^2$

If SLR by salinity change is known, SLR due to mass input can be calculated Eustatic rise due to mass input corresponds to 515km³/year or 1.4mm/year

20th-century SL remains an enigma
We don't know warming or melting was dominant

□ Warming of the EJS region

-Report of sea water warming Minami et al.(1999): long-term increase of temp. below 800m and 500m Kim et al.(2001): 0.1-0.5°C warming in the upper 1000m layer over the last 40 years

Present study background

Present study backround

- →Interest in examining what the rate of SLR is in marginal sea such as EJS and what the cause of SLR is?
- →If it is due to warming, is it due to deep or upper water warming ?
- →Ecological aspects (later)

Example of Warming Evidence in the East/Japan Sea (EJS)

Station coverage over 30 years (1941 to 1969(1973))

2.Data Analysis

Data

- -Tidal record : 20-30 yrs
- -Topex/Poseidon data (9yrs) : '93-'01 -Hydrography data:
- -Hydrography data: Period : '60 - ' 01 or '93-'01 Source : KODC & JODC (JODC : $0.2^{\circ}x0.2^{\circ}$ or $0.4^{\circ}x0.4^{\circ}$)
- -Air Temp. data

Analysis

- -Tidal record : anomalies for 13 tidal stations
- -Topex/Poseidon(T/P) data : mean slope for non-tidal residual
- -Temperture data : calculate sea level rise by salinity and temp. change
- -Air Temp. data : anomalies

Comparison of thermosteric sea level and T/P

Yearly Mean Sea level : tidal data

Recent 9-year('93-01) increasing rate (Tide gauge)

K. side: 7.7mm/yr

J. side: 6.3mm/yr

Average : 6.5±0.7mm/yr

Comparison of TSL with T/P at three points

Various Sea Levels

Steric sea level (SSL) : MSL variation by density (T, S) variation

Thermosteric sea level (TSL) : MSL variation by temp. variation

Harosteric sea level (TSL) : MSL variation by sal. variation

Eustatic sea level (ESL) : MSL variation of added mass by ice melting in the continents

Comparison of TSL with T/P at 3 crossover points

Results : SLR rate from TSL & T/P for 9 years

Min, Max, Mean, StDev: -4.3, 20.5, 6.6, 4.1 mm/yr (N=789) Min, Max, Mean, StDev: -6.3, 32.1, 5.5, 7.6 mm/yr (N=59 stations)

SLR relation between EJS and World Ocean ?

Recent 6yr global SLR

EJS pattern reflects feature in the northwestern Pacific (T/P)

Recent 41yr global SLR (TSL) ~ 0.5mm/yr **3. Results (focusing topics)**

-Long-term (decadal) trend of TSL

-Inhomogeneous SLR : Eddy contribution to locally large SLR rate ?

-Deep water warming effect to SLR

3. Results : Long-term (decadal) variability of TSL

- -Long term variability Data : 1960 – PDO-like(?) signal : ~15yr oscillation Same pattern in heat content anomaly of Pacific Ocean
- -Recent sea level trend : in increasing phase from 93

3. Results :4 points

The cause of inhomogeneity?

Min, Max, Mean, StDev: -4.3, 20.5, 6.6, 4.1 mm/yr (N=789) Min, Max, Mean, StDev: -6.3, 32.1, 5.5, 7.6 mm/yr (N=59 stations)

[ct,col0,range]=[41,40,180] (data file: trk...w4.det)

Cause of inhomogeneity : TSL and Temperature anomaly

Temp. anomaly (8C

-Large TA variability by eddy existence

3. Results

Time-varying eddy contribution to TSL trend

25

3. Results : Sea Level Rise Effect by deep water warming

3. Results : Biological implication in relation to eddy activity in the Ulleung Basin

-Eddy intensity seems to be reinforced or intensified over some period
-If eddies shows such a trend over limited time period, can there be biological relation in the Ulleung Basin?

Annual cycles in phytoplankton abundance in the UB

- In the UB, seasonal change in the mixed layer depth drives the annual chlorophyll patterns which exhibit bimodal increases (spring and autumn blooms).
- After spring blooms, the surface chlorophyll-a in summers decreases down to annual minimum due to nutrient limitation among other things (nitrate values are typically less than 0.3~0.5 μM in August).

Hypothesis

- If eddies become frequent and strong, they could possibly transport nutrients into upper mixed layer in summer.
- If that is the case, eddy activity would increase surface chlorophyll-a in summer.
- The effects of eddies would be most evident when nutrient limitation is strongest, probably in August.

Comparison of Chl-a in August

- UB (Ulleung Basin): 130.5~131.5E, 36.5~37.5N
- YB (Yamato Basin): 135~136E, 38~39N
- 12x12 pixels (9km)

SeaWiFS Chl-a in August

Possible mechanisms of nutrient transport

- Entrainment of coastal upwelling water
- Isopycnal transport? (Yentsch and Finney, 1985)

Summary & Conclusion :

- □ Recent 9 yr('93-'01) SLR feature in East/Japan Sea(EJS)
 - Larger increasing rate than global average('93-'98)
 - T/P result well compared with TSL
- □ Mechanism of sea level rising in the EJS
 - Driven mainly by upper layer warming effect (later in phase with global trend)
 - Subject to decadal pattern (PDO?) of Pacific heat anomaly
 - Deep water warming effect being minor until now
- □ Large SLR pattern in Ulleung & Yamato basins
 - Affected by large decadal pattern influenced by Pacific signal
 - \rightarrow Recent 9-year trend : increasing phase after initial decrease
 - Dominated by eddy intensity (size and duration)
- **Ecological implification**
 - Reinforced eddy activity increases the surface chlorophyll-a in summer in the Ulleung Basin

Thank you !