Comparison of the growth pattern for Japanese chum
salmon in the Okhotsk Sea and the Bering Sea

Okhotsk Sea Coast of Hokkaido
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Fig. 2 Thirty year running averages of the yearly mean air temperature (®) and accumulated ice
concentration (m) at Abashiri, Hokkaido. (Aota 1999)
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Scale sample:

Female adult chum salmon in the
Ishikari River (Age-4)

1970-2001 (except for 1973 & 1985)
Total scales 817 (30 scales in a year)
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Changes in annual growth of age-4 female
chum salmon returning to Ishikari River during
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Growth of Ishikari River
chum salmon in the Bering
Sea (at age 2-4)

Annual growth (m
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Change in anomaly in fork length of adult chum

salmon returning to the Ishikari River during 1953-
2004.

Growth at age-3
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Change in growth at age-3 of Ishikari River chum
salmon in the Bering Sea during 1970-2002.
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Relationship between carrying capacity and population density-dependent
effect in Hokkaido chum salmon population

RCC=(CC-B)/CC x 100

RCC: Residual carrying capacity
CC: Carrying capacity

B: Biomass

FL: Fork length (mm)

AGE: Mean age at maturity
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Relationship between anomaly of fork length and residual carrying capacity (RCC) in the Ishikari
River population. RCC (%) =(Carrying capacity — Run) / Carrying capacity X 100.
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Changes in growth at age-1 of adult chum
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Annual change in zooplankton biomass
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Annual change in zooplankton biomass in the Okhotsk Sea.

a) Southern part of the Okhotsk Sea (Shuntov and Dulepova 1996)

b) West Kamchatka Area: Northern 54'N (Shuntov and Dulepova 1996)
c) West Kamchatka Area: Southern 54°N (Shuntov and Dulepova 1996)
d) Northern Sea of Okhotsk: Spring (Kim et al. 2005)

e) Northern Sea of Okhotsk: Summer — Fall (Kim et al. 2005)



Chlorophyll-a Zooplankton
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Changes in ice cover rate and chlorophyll-a in Changes in ice cover rate and zooplankton
the Okhotsk Sea during 1998-2004. biomass in the Okhotsk Sea during 1986-2001.

Correlation coefficient between Ice cover rate and productivity in the Okhotsk Sea

Area Years n r = P References

Chlorophyll-a 50-56N, 145-155E 1998-2004 7 -0.373 0.807 0.410 Present data

Zooplankton  Northern Okhotsk Sea 1986, 88, 1997-200 7 0.164 0.138 0.726 Kim et al. (2005)
Southern Okhotsk Sea 1986-88, 1991-94 14 0.282 0.138 0.726 Shuntov and
West Kamchatk 1986-88, 1991-94 7 0494 1614 0.260 Dulepova (1996)
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Growth in the Okhotsk Sea & return rate

(n=30, F=43.86, P<0.001)
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Changes in anomaly of growth at age-1
(Length) and return rate (RR) of chum salmon
in Hokkaido.

Body size of juvenile released & return rate

r=0. 841
(n=19, F=41.02, <0.001)
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Changes in body weight (BW) of juvenile

released and return rate (RR) of chum salmon

in Hokkaido.

Result of multiple regression analysis in return rate of Hokkaido chum salmon population on
average body size (g) at the release and average growth of the Ishikari River chum salmon at

the age 1

Variable Slope Partial correlation T P
Body size of juvenile released 4.003 0.700 3.797 0.002
Growth of young at age-1 0.002 0.039 0.152 0.881
Constant 0.876 0.240

r’=0.685, df: n1=2, n2=15, F=16.32, P<0.001, AlC=41.404



Period of Critical Mortality
In the Pacific salmon

e Size-selective mortality immediately after the seaward

migration (Healey 1982) Spring
o Size-related mortality over the first marine fall and winter
(Beamish et al. 2004) Winter

Spring > Winter

Mortality

|
Winter

|
Spring

The First Marine Life Period



Conclusion

The life history strategy of Pacific salmon
offers a useful framework for evaluating not
only inter- and intra-specific interactions but
also climate-related risk factors around the
North Pacific

Growth Carrying capacity e.g. Growth pattern of Japanese chum salmon:
pattern ‘ Popmaﬂoi donsiy. - The Okhotsk Sea: Environmental factors
dependent effect (SST, Ice Cover, Zooplankton Community)
- The Bering Sea: Intra-specific interaction
W (Population density-dependent effect)

Chlorophyll-a
Zooplankton




Comments to slides

Slide 1

Our human being has an impact on the earth, including the marine ecosystem.
This figure shows changes in air temperature and sea ice concentration at the
Okhotsk Sea Coast of Hokkaido. As you see, the long-term variation of the sea
ice concentration is well correlated with the air temperature at Nemuro. This
would be one of phenomena of the global warming.

We'd like to present the spatial and temporal pattern of growth for Japanese
chum salmon relating to the climate change and the response of life history
strategy, in order to discuss climate and human impacts on the life history
strategy of chum salmon.

Slide 2

This figure shows the migration route of Japanese chum salmon based on Urawa
(2000). After spending the eraly marine life in the coastal waters of northern
Japan in spring, Japanese chum salmon spend their first summer in the Okhotsk
Sea, and then move to the Western Subarctic Gyre for the first winter.
Thereatfter, these chum salmon migrate between their summer feeding grounds
in the Bering Sea and their overvintering grounds in the Alaskan Gyre. After
about four years, they return to their natal rivers for spawning.

Slide 3

| totally analyzed 817 scales of age-4 female chum salmon collected in the
Ishikari River during 1970-2001 except for 1973 and 1985. Distances and
number of circuli from the focus to the inner edges of check and annuli of scales
were measured by a scale image processor (Ratoc System Engineering Co.) to
the nearest one micrometer along the longest axis. The r; — r4 indicates annual
scale radius. R¢jand Rys also show scale radiuses at the coast of Japan and the
Okhotsk Sea, respectively. Individual growth in fork length was back-calculated
from this formula, where values “114” and “40” indicate focus radius and fork
length at squamation.



Slide 4

These figures show annual changes in growth by age.

At the first year, growth increased in the 1990s. On the other hand, growth at the
other years decreased since the 1980s. In particular, the growth reduction at the
third year was considerably higher than those in the other years.

The growth increase at the first year occurred at the Okhotsk Sea, but not at the
coast of Japan.

Therefore, these results suggest that chum salmon derived from the Ishikari
River indicated the growth increase at the Okhotsk Sea in the 1990s and the
growth reduction at the Bering Sea since the 1990.

Slide 5

These two figures demonstrate annual changes in anomaly of fork length and
growth at the third year of age-4 female chum salmon returning to the Ishikari
River, respectively. As you know well, both growth reductions were synchronized.
The coefficient of determination between the fork length and growth at the third
year was highest in the other years.

Slide 6

| already estimated the carrying capacity of three species (sockeye, chum, and
pink salmon) in Pacific salmon, using the replacement level on the Ricker’s
recruitment curve.

Then, | showed that these carrying capacities are significantly synchronized with
the long-term climate change.

Slide 7

| defined the residual carrying capacity (RCC) as “carrying capacity” minus
“biomass”, divided by “carrying capacity.” And then, | evaluated the relationship
between the RCC and body size and age at maturity of chum salmon returning to
Hokkaido.

Relationship between the RCC and the fork length of Hokkaido chum salmon
population indicated significant positive correlation.

And the mean age at maturity showed the negative correlation with the RCC.
These results also suggest that the carrying capacity of chum salmon would be
closely related with the long-term climate change and the population density-
dependent effect.



Slide 8

The similar result was observed the relationship between RCC (residual carrying
capacity) and anomaly of fork length in the Ishikari River chum salmon
population. At less than 10% of the RCC, mature size will attain the biological
minimum size. In the Bering Sea, therefore, growth of Japanese chum salmon
will be affected by the population density-dependent effect.

Slide 9

I'd like to shift to the change in growth of Ishikari River chum salmon in the
Okhotsk Sea. | already talked that the growth increased at the Okhotsk Sea in
the 1990s, despite no change in the growth at the coast of Japan.

Slide 10

In the Okhotsk Sea, the ice cover area extremely decreased in the 1990s. In this
period, on the contrary, the growth of Hokkaido chum salmon juvenile increased
in the Okhotsk Sea. The relationship between the rate of ice cover area in the
Okhotsk Sea and the growth anomaly of chum salmon juvenile indicates the
significant negative-correlation.

By the way, the correlation map of SST in winter and rate of ice cover area in the
Okhotsk shows the negative correlation. Therefore, this decrease in the ice cover
area will be a consequence of an increase in SST in winter.

Slide 11

There are no continuous long-term data on zooplankton biomass in the Okhotsk
Sea. Based on Kim et al. (2005), the zooplankton biomass from end of 1990s to
the early 2000s was reduced by half in the 1980s.

Slide 12

These figures show changes in the rate of ice cover area and chlorophyll-a or
zooplankton biomass. The chlorophyll-a is represented as annual mean based
on data of the satellite. This table indicates results of those correlation
coefficients.



In general, it is believed that the timing and duration of ice cover and winter
winds determines the onset of the spring net primary production.

In the Okhotsk Sea, however, chlorophyll-a and zooplankton biomass are not
closely coupled to the ice cover rate.

Slide 13

Relation map between the summer SST and the growth anomaly of the Ishikari
River chum salmon in the Okhotsk Sea represents the significant positive-
correlation.

That is, results of our limited data suggest that the growth of Ishikari River chum
salmon will be affected by not the productivity trends (such as chlorophyll-a and
zooplankton biomass), but the SST, relating to the rate of ice cover area in the
Okhotsk Sea.

Slide 14

By the way, these figures show changes in the anomaly of growth in the first
year, the mean body weight of juvenile released, and return rate of Hokkaido
chum salmon population. The return rate is defined as survival rate from lease to
return. The return rate correlated with the growth in the first year and body size of
juvenile released.

However, the result of multiple regression analysis on the return rate of Hokkaido
chum salmon population showed that (1) the regression identified body size of
juvenile at the release, (2) that relationship between the growth in the Okhotsk
Sea did not indicate significant trend.

Slide 15

There are 2 hypotheses on the period of critical mortality in the Pacific salmon:
(1) Size-selective mortality in the early marine life period and (2) Size-related
mortality over the first marine fall and winter relating to the sufficient growth by
the end of the first marine summer. As far as our results, mortality of Ishikari
River chum salmon population will higher in the spring than in winter.



Slide 16

Needless to say, the life history strategy of Pacific salmon offers a useful
framework for evaluating not only inter- and intra-specific interactions but also
climate-related risk factors around the North Pacific.

The growth pattern of Japanese chum salmon will be controlled by the
environmental condition such as SST and Ice cover relating to the climate
change in the Okhotsk Sea, and by inter- and intra-specific interactions such as
the carrying capacity and the population density-dependent effect in the Bering
Sea.
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