Relationship between the mixed layer depth and surface chlorophyll in the Japan/East Sea

Hyun-cheol Kim^{1,2}, Sinjae Yoo¹ Im Sang Oh²

- 1. Korea Ocean Research & Development Institute
 - 2. Seoul National University

<u>Acknowledgements</u>

- We thank NASA/DAAC, KODC and JODC for providing the data.
- Hyun-cheol Kim appreciate travel support from KOC and PICES.

Conceptual Model

- **♦** The concentration of phytoplankton in a water mass is caused by several key factors.
- ♦ The growth processes and photosynthesis, are under the control of light and nutrients.
- **♦** The seasonal change in growth in temperate seas is linked with the seasonal change in the mixed layer depth.
- ♦ The mixed layer depth is regulated by meteorological processes such as wind stress, air-sea heat flux and change in solar radiation.

Objectives

◆ To understand the role of mixed layer depth and current in determining the surface chlorophyll distribution in springs in *the Japan/East Sea* <u>using satellite-observed</u> <u>Ocean Color</u> and other data.

Sub-topics

- 1. Seasonal variability & inter-annual variability of chlorophyll in the Japan/East Sea (JES).
- 2. Relationship between CHL and mixed layer depth at 4 sites
 - Phytoplankton bloom timing and mixed layer depth -

Study area

Japan/East Sea (JES) - "miniature ocean" (Ichiye, 1984)

Schematic map Geography & current system

Topography & Three Basins

Data

- ◆ Ocean Color (Chlorophyll) : SeaWiFS (1997.9~2005.6)
- ◆ PAR:
 SeaWiFS (1997.9~2005.6)
- ◆ SST:
 AVHRR (1997.1~2004.12)
- ◆ MLD:
 FNMOC Model results (by Kara et al., 2003)
- ◆ Temperature profile KODC (1997~2004), JODC (1997~2002)

1. Seasonal and inter-annual variability of chlorophyll in Japan/East Sea

Statistics of CHL in springs (1998~2005)

Mean seasonal CHL concentration cycle over the eight years (1997~2004) in the JES

CHL distribution in springs

12 °C isothermal range (MAR→APR) in springs vs. ENSO Index

12°C - isotherm range from March to May

Summary 1.

- **♦** Average CHL is higher in coast region and sub-polar front than those in the Japan Basin (north) and the southeastern JES.
- **♦** Average CHL in Primorye coast showed high inter-annual variation.
- **♦** Seasonal CHL cycle is bimodal in the JES.
- ◆ Spring blooms in the sub-polar front region is earlier than those in the Japan Basin by one month.
- **♦** In El Niño years (1998, 2002), 12 °C -isotherm moved northward further from March to April, and the bloom occurred earlier.
- **♦** These two features seem related.

2. Relationship between CHL and mixed layer depth at 4 sites

- Bloom timing and mixed layer depth-

CHL data with matching MLD data were used (2000~2003)

Sampling sites

- **UB** (Ulleung Basin)
 - ⇔ 130.5°E ~ 131.5°E
 - \hat{x} 36.5°N ~ 37.5°N
- **YB** (Yamato Basin)
 - ⇔ 135.0°E ~ 136.0°E
 - $38.0^{\circ} \text{N} \sim 39.0^{\circ} \text{N}$
- **JBW** (western part of Japan Basin)
 - ⇔ 132.0°E ~ 133.0°E
 - \hat{v} 40.5°N ~ 41.5°N
- **JBE** (eastern part of Japan Basin)
 - ⇔ 136.5°E ~ 137.5°E
 - 3 41.5°N ~ 42.5°N

CHL time-series at 4 sites

Matching time of MLD and CRD and starting time of blooming define

- ◆Mixed Layer Depth (MLD):

 Model running result from FNMOC
- ♦ Critical Depth (CRD):
 Calculated using
 Nelson & Smith (1991) formulation $CRD = 0.18 \,\overline{I}_0 / KI_c$

 $\frac{\Delta \text{CHL}_{(8\text{days})}}{8 \text{ days}} = 0.03$ $\frac{2}{8 \text{ days}} = 0.03$ $\frac{2}{8 \text{ days}} = 0.05$

Relationship between starting time of blooming (CHL=1mg/m³) and matching time of MLD and CRD

- **◆**The spring blooms occurred later than expected by CRD model in the UB and YB (southern gyre).
- **◆**In JBE and JBW (northern gyre), linear trend indicates that local stratification is the major driver in determining the bloom timing.
- **♦**On the contrary, in the UB and YB, larger scatter indicates that spring bloom mechanisms are more complicated.

SST images & temperature profiles

Summary 2.

- ♦ The spring blooms in 2002 are earlier than those in 2000 at all sites.
- ◆ Spring blooms in southern part of JES are earlier than those in northern part of JES
- ◆ Spring blooms in western part of JES is earlier than those in eastern part.
- **♦** The shallower the mixed layer depth, the earlier spring bloom started (2002).
- **♦** The deeper the mixed layer depth, the later spring bloom started (2000).
- **♦** The spring blooms occurred later than expected by CRD model in the UB and YB.

Conclusions

1. Seasonal and inter-annual variability of CHL in the JES.

- **♦** Seasonal CHL cycle is bimodal
- **♦** Spring blooms around the sub-polar front is earlier than those in Japan Basin by one month.
- ♦ In El Niño years (1998, 2002), 12°C isotherm moved northward faster from March to April, and the bloom occurred earlier.

2. Bloom timing and mixed layer depth

- **♦** The shallower the mixed layer depth, the earlier spring bloom started (2002).
- **♦** The deeper the mixed layer depth, the later spring bloom started (2000).
- ♦ Northern basin, such as JBE and JBW, showed a linear relationship between the starting time of bloom and matching time of MLD and CRD, whereas southern basin, such as UB and YB, showed a large deviation between them.
- ♦ We interpret this as that local stratification process determined the plant growth conditions in the northern basin, while in the southern basin, plant growth condition was determined in more complex ways.
- Presumably, Tsushima Current and eddies in the southern part seemed to make light-nutrient conditions for plant growth more complex.

