

Seasonal hypoxic zone adjacent the Changjiang Estuary

Hao Wei, Yunchang He, Qingji Li, Zhiyu Liu, Haitang Wang

Physical Oceanography Lab, Ocean University of China Qingdao, 266003, China P.R.

Contents

- 1. Introduction
- 2. Hypothesis
- 3. Observation during September 2003
- 4. Analysis and discussion
- 5. Perspective

1. Introduction

• What's hypoxia?

hypoxia: DO<2mg/l; bottom with weak water exchange; an index to eutrophication;

What's its biological effects?
Organisms will die; more H₂S;
Benthic community will change;
Pelagic community will change.

Dead Zone in the Mississippi River Plume

Area: 2*104km²

Hypoxic zone adjacent the Changjiang Estuary, EAST CHINA SEA

There is a large southnorthward band of hypoxic zone (DO<2mg /I) adjacent the Changjiang estuary during warm season like other estuaries of large runoffs in the world. more sensitive, disappear as the north wind onset

Trends of hypoxia in the ECS

Time of survey	center of lowest DO zone	DO minimum value mg/l	Investigator
1959.8	123°00′E, 31°30′N	2.57	Hongkan Gu et.al. (1980)
1981.8	123°00′E, 30°50′N	2.00	Limeburner et.al. (1983)
1982.8	122°30′E, 31°15′N	2.85	Jiyu Chen et.al. (1988)
1988.8	123°00′E, 30°50′N	1.96	Tian et.al. (1993)
1999.8	122°59′E, 30°51′N	1.00	Daoji Li et.al. (2002)
2003.9	122°56′E, 30°49′N	0.8	This study

What induces and maintains the hypoxia adjacent the Changjiang Estuary?

- Nutrients input from Changjiang and other areas increasing dramatically;
- POC increasing;
- Frequently HAB;
- Over fishing;

role of physical processes?

3. Observation during late summer, 2003

Stations of cruise Sep.4-25, 2003 Chinese GLOBEC project '973'

Seabird911+CTD: Temperature and

Salinity profiles

YSI: DO profiles

RDI OS75kHz ADCP: Current profiles

Hypoxic Zone

Dramatic low dissolved oxygen concentration (DO) less than 0.8mg/l was found during the cruise Sep. 2003. The hypoxic zone was about 2*10⁴km² along the 20-50m isobaths.

4. Analysis and Discussion

- DO distribution
- •DO vs. water mass
- •DO vs. density stratification
- DO vs. phytoplankton biomass
- •DO vs. POC

Yellow line refers to 2mg/l

Trend of hypoxic zone has a good relationship to the 50m isobaths.

Red line represents isobaths

Black line represents isoline of DO

Vertical distribution of DO was mainly analyzed on section Y and section PN

DO on northern section Y:

Hypoxic zone exists under 10m depth and the area is larger.

DO (mg/l)

DO on southern section PN:

Hypoxic zone is at the depth of 18-40m and much smaller.

DO (mg/l)

Horizontal distribution of salinity (Surface layer)

Surface salinity shows that Changjiang diluted water (CDW) plume points to ENE.

Southern Section PN:

Less influence in the south as CDW turns northeast when run out of mouth

T()

Temperature on northern section Y: thermocline at the depth of 5-10m with 4m thickness; a warmer core at depth larger than 25m of station Y3 which was taken as the leading edge of TWC.

Lower DO is not the character of a water mass!

Density distribution

Density(kg/m3) of 20m layer SIGMT at the depth of 20m layer

Dense water at inner side

Bottom hypoxic zone was the same as high bottom Chl-a distribution.

We speculated that bottom algae rather than the surface bloom should be the source of the particulate organisms that consume the dissolved oxygen when then decay.

Particulate materials from Changjiang River

Source of POC:

settled from upper layer, horizontal transport, vertical mixing, resuspension relate to sediment type

Remarks:

- DO vs. water mass lower DO is not the character of a water mass
- DO vs. density stratification strong density stratification maintains the hypoxia zone in the open area;
 - plume at upper layer and salty water at lower layer make the high density difference; hypoxia area determined by extension of plume and salty water;
- DO vs. phytoplankton biomass not directly?
- DO vs. POC not locally?

5 Perspective

- Worth to further research representative for wide shelf with strong tide under monsoon and influenced by west boundary current; more complicate
- Not take as one box, more research will be given in quantificational way. Mixing?
- Community structure change? Organism adequate? Is it harm?
- What's the main reason? Could be the hypoxia volume decreased? How?

