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Bi-weekly Sampling:

• 1969 1969 –– 19731973 (Miller, Pearcy,  
Peterson        

• 1983  1983  (Miller)

• 1996 1996 –– presentpresent (Peterson et al.)



Sampling methods

• Water sampling with 
CTD, Niskin Bottles, 
and buckets for 
hydrography, chl-a and 
nutrients

• Mesozooplankton with 
½ m 200 um net towed 
vertically

• Euphausiids with 70 cm 
505 um net towed 
obliquely



Tutorial: On Upwelling

• Seasonal variations in circulation patterns

• Seasonal variations in winds

• Weekly variations in coastal upwelling

• Some examples



Winds and current structure
off coastal Oregon:

•Winter:
Winds from the South
Downwelling
Poleward-flowing Davidson Current
Uniform cross-shelf hydrography

•Spring Transition in April/May

•Summer:
Strong winds from the North
Coastal upwelling
Equatorward alongshore transport
Strong cross-shelf physical gradients

•Upwelling-favorable winds cease in 
September/October
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Coastal Upwelling is a nearshore phenomenon

20 m

100 m

Isopycnal surfaces

Equatorward winds 
create active upwelling 
at the coast, driving the 
upper 20 m of the water 
column offshore.  Most 
active upwelling is 
within 10 km of the 
shoreline.

10 km



Coastal Upwelling is a nearshore phenomenon

20 m

100 m

Isopycnal surfaces

Wind reversals occur every 
5-10 days; poleward winds 
result in “relaxation” of the 
upwelling and surface waters 
flow landward.



Data from NSF/CoOP/COAST program; courtesy of Jack Barth



Winds measured at an offshore buoy (22 miles offshore) 
and at a shore station in 2001.  Upwelling season May-
September (periods of negative transport) although events 

occur in March-April and October and Novermber

2001 Ekman Transport 
(46050 buoy + nwpo3)
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Winds measured in 2001 and 2002 (for example) show 
strong contrasts: (1) moderate winter in 2001; (2) storms 

most intense in November-December
2001 Ekman Transport 
(46050 buoy + nwpo3)
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Bottom water 
hydrography 
NH 05 at 50 m
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Climatology: 
1997-2004 NH 05

• Nitrate to 30 micromolar 
during summer but is often 
zero; 

• Chlorophyll to 25 
micrograms per liter; 
typically 5-10 ug L-1; 

• Copepods to 80 micrograms 
carbon per Liter but typically 
10-20 ug L-1 ;

• Peaks seen during upwelling 
season (May-September);

• Lags between peaks in nitrate, 
chl-a and copepods.  
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NH5 Seasonal Patterns
(monthly mean; '96 - '02 climatology)
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Interannual 
variations not large

Annual Average
Chl-a Copepods

• 1997     3.0       9.2
• 1998     3.9       7.2
• 1999     3.0       8.7
• 2000     3.3     17.2
• 2001     4.4     13.2
• 2002     5.4     13.3
• 2003     4.6     10.6
• 2004

Chlorophyll-a at NH 05
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In carbon units, phytoplankton usually has a 
far higher biomass than copepods, at NH 05

• Red Line is a slope = 1 
• Green Line is fitted 

regression line = 3.3
• Fitted line explains very 

little variance (3.8% !!)
• Standing stock of Chl-a 

carbon often 10 times 
greater than copepod 
carbon

Phytoplankton Carbon:Copepod Carbon
assuming C:Chl-a = 40
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Strong cross-shelf 
variations in N & P 

• Nitrate highest nearshore; lowest 
ofshore;

• Chl-a appears to track changes in 
nitrate concentration;

• Cross-shelf gradient in growing 
season: longest at NH 5and shortest 
at NH 25;

• Nitrate zero offshore during 
upwelling season but 5 micromolar 
during winter months;  

• The occasional high values of chl-a 
seen at NH 25 in summer may be 
due to advection rather than in situ 
growth.
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Strong cross-shelf 
variations in P & Z

• Pronounced seasonal 
cycle at NH 5; less so 
at NH 15 and NH 25;

• High copepod biomass 
in winter due to 
Neocalanus

• Hint of spring bloom 
offshore Jan-Feb
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Cross-shelf gradients 
in copepod biomass

• Highest at NH 5; 
lowest at NH 25

• NH 05 and NH 10 
similar; NH 15 and 
NH 25 similar.

• Maximum biomass 
in July-AugustJan  May  Sep  Jan  
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Euphausiids can dominate at NH 25, the 
shelf break

• Difficult problem because 
euphausiids are extremely 
patchy: 4 of 41 samples had 
extraordinary abundance 
(Ressler et al. Deep-Sea Res. 
In press;

• On average euphausiids have 
3X more biomass than 
copepods;

• NEMURO able to include 
euphausiids as producers and 
consumers.
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                YEARS 2001-2004
               average        average
               copepod        euphausiid
               biomass        biomass

NH 25        5.3  mg C m- 3  17.8 mg C m- 3     
NH 15      10.9                    0.6
NH 10      13.7                    1.7
NH 05      12.5                    0.1



• If we delete the four 
euphausiid “outliers”, 
result is that on 
average euphausiid 
biomass is equal to 
copepods (~ 3.0 mg 
carbon m-3
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Conclusions

• Strong cross-shelf variations in N, P and Z due 
to strong gradients in coastal upwelling.  
Upwelling is expressed primarily in the 
nearshore zone, within 10 km of shore. 

• Year to year variations not great but are 
significant (discussed in next week’s talk). 

• Euphausiids important only at the shelf-break 
but do equal or exceed copepod biomass.  
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