# Relationship between phytoplankton blooming and windstress in the sub-polar frontal area of the Japan/East Sea

Hyun-cheol Kim<sup>1,2</sup>, Sinjae Yoo<sup>1</sup>, and Im Sang Oh<sup>2</sup> KORDI<sup>1</sup> SNU<sup>2</sup>

#### **Background & Objective**

- **♦** Yamada *et al.* (2004). "Seasonal and interannual variability of sea surface chlorophyll *a* concentration in the Japan/East Sea (JES)"
  - There are remarkable <u>springs blooms</u> and <u>fall blooms</u> in the Japan/East Sea, as was observed from SeaWiFS chlorophyll *a* <u>during 1997 to 2003</u>
  - There are interannual variability in the start timing of the spring blooms and fall blooms and of their spatial distributions.
  - Among many forcing variables, wind plays an important role in determining the vernal stratification process, which in turn determines bloom timing in temperate water.
- ♦ In this presentation, We try to reveal the relationship between bloom process and wind with two hypotheses.

#### Variability of Chlorophyll a & Windstress in the Japan/East Sea





#### **SST**



# **Standard deviation** 2000~2003 **Pa** Latitude (°N)

32 134 136 Longitude (°E)

#### **MLD**



# Variability of CHL, Wind and PAR 1997~2003

Green Bar: Weekly CHL, Red line: Daily Wind stress, Black line: Weekly PAR



### **Hypotheses**

#### **Hypothesis 1:** The timing of spring bloom

- As the season progresses, the wind in spring becomes weaker and solar radiation gets stronger than in winter.
- These will accelerate thermal stratification in the upper layer.
- Stronger wind events in spring could delay the timing of blooming, while weaker wind events could advance the timing.

#### **Hypotheses**

#### **Hypothesis 2.** The timing of fall bloom

- During summers, the phytoplankton biomass in the upper layer is kept low by grazing and low growth rate limited by nutrients due to stratification.
- Monsoon wind is reversed in direction and gets stronger in fall.
- The water column is destratified by stronger wind and weakened solar radiation and nutrients are supplied to the upper layer. Growth are activated.
- Stronger wind events in fall could advance the timing of blooming, while weaker wind events could delay the timing.

Light-nutrient hypothesis and seasonal growth cycles in the temperate waters



### Previous studies

- ☐ The stirring of the upper layers, by convective overturn and winds, is the major mechanism for regulating phytoplankton growth
  - Sverdrub(1953), Cushing(1962), Evans and Paslow(1985), Yentsch(1990)
- ☐ The role of wind stress in the spring bloom
  - Goffart *et al.*(2002), Saitoh *et al.*(2002), Smayda (2002), Weise *et al.*(2002), Eslinger *et al.*(2001), Babaran *et al.*(1998), Tester *et al.*(1998), Lancelot *et al.*(1997), Brooks *et al.*(1993), Brooks *et al.*(1985)
- **□** Wind-driven Upwelling (nutrient resupply to the euphotic zone)
  - Tang et al.(2003), Ryan et al.(2002), Roegner et al.(2002), Trainer et al.(2002).

#### Data

- Ocean Color
  - SeaWiFS (SeaStar:1997~2003)
  - MODIS (Terra:2000~2003)
- SST
  - MODIS (Terra:2000~2003)
- Windstress (MWF)
  - AMI-Wind,NSCAT (ERS,NSCAT:1991~1998)
  - SeaWinds (QuickSCAT:1999~2003)
- MLD (model)
  - FNMOC (U.S.Navy's Fleet Numerical Meteorogy and Oceanography Center: 2000~2003)
- PAR
  - SeaWiFS(1997~2003)
  - MODIS(2000~2003)
  - NCEP reanalysis 2.
- KODC

# Spring



Fall



# Averaged Monthly Trends (1997 – 2003)



## CHL (SeaWiFS) and MLD (KODC) in APRIL



sub-polar frontal area of the Japan/East Sea

# Daily CHL and Windstress 1997-2003



Time lag between Wind anomaly and CHL response in Spring



•Red line is CUSUM of wind anomaly

CUSUM: Cumulative Sum

# Time lag between Wind anomaly and CHL response in Fall



#### Previous studies about time lag

#### The role of wind stress in the spring bloom

- Weise *et al.*(2002): wind>8m/s disrupt blooms.
- Yin et al. (1996): wind speed > 4m/s interrupt the spring bloom.
  - Wind decrease ► NO<sub>3</sub> decreased after 5 days
    - ▶ bloom occurred after 9 days.
- Bleiker and Schanz (1997): wind decrease ▶ growth occurred after 7 to 10 days

#### Wind-driven Upwelling (nutrient resupply to the euphotic zone)

- Yin *et al.*(1997): bloom occurred soon after the wind.
- Marra *et al.*(1990): wind increase
  - ► increase in nitrate concentration in the euphotic zone
  - ▶ bloom over the next 2days

# Light & Nutrient MODEL (Yentch, 1990)

- ☐ The light limiting part
  - $P(z) = P_{max} \tanh \alpha I(z) / P_{max}$

  - $R = a P_{max}$   $P/R = \int_{Zm} P dz / \int_{Zm} R dz$
- ☐ The nutrient limiting part
  - $NZm = \int^{Zm} N(z)dz$
  - PN = [(P/R-1)/5] NZm

P: Phytoplankton Photosynthesis

R: Respiration

N: Nitrate concentration

Zm: Mixed layer depth

a: respiration ratio

## Windstress & Mixed layer depth



# Chlorophyll a & PN & Mixed Layer depth

(Respiration ratio: bold line = 10 %, dashed line = 20%)



### Conclusion

From above results, our hypotheses are well supported as follows.

- ◆ In the sub-polar front of the Japan/East sea
  - Hypothesis 1: <u>Stronger wind</u> events in spring could <u>delay the timing of blooming</u>, while weaker wind events could advance the timing
    - □ Spring bloom occurs in 7 to 10 days after wind.
  - Hypothesis 2: <u>Stronger wind</u> events in fall could <u>advance the timing of blooming</u>, while weaker wind events could delay the timing.
    - ☐ Fall bloom occurs after 1 to 4 days with increasing seasonal wind.

# Thank you.



# Result: Light limiting Chlorophyll *a* & P/R & Mixed Layer depth

