Initial Results of Russian-American Long-term Census of the Arctic (RUSALCA)

> Terry E. Whitledge, Kathleen Crane, Vladimir Smolin, Kevin Wood and Mikhail Zhdanov

*University of Alaska Fairbanks *Arctic Research Office, NOAA *Far Eastern Hydrometeorological Research Center *Group Alliance, Moscow

Acknowledgements

- Russian Academy of Sciences
- Far Eastern Hydrometeorological Research Center, Vladivostok
- Group Alliance, Moscow
- Arctic Research Office/NOAA
- Ocean Exploration Program/NOAA

Objectives

- Biophysical moorings in western Bering Strait
- High speed CTD transects across Herald shelf valley
- Enhance the knowledge of faunal distributions for the census of marine life
- Assess potential productivity changes accompanying global climate change in the subarctic/Arctic

Cruise Personnel

Citizenship

Position/Institution

Hydrographic Liason

Vladimir Smolin

Alexandr Chemin Alexander Federov

Agency Oversight

Kathleen Crane Kevin Ray Wood Mikhail Zhdanov News Media

News Media

Jeffery Jones Canada Benthic Processes- Infauna

Arianne BalsomUSABoris SirenkoRussiaSergei GagaevRussia

RussiaState Navigation and Hydrographic Research Instituteof the Ministry of Defense of the Russian FederationRussiaNavy Headquarters of the Russian FederationRussiaState Navigation and Hydrographic Research Instituteof the Ministry of Defense of the Russian Federation

USANOAAArctic Research OfficeUSANOAAArctic Research OfficeRussiaGroup Alliance

Reporter, Reuters Canada Limited

Univ. of Tenn Zoological Inst. Zoological Inst.

Katrin Iken	Germany
Bodil Bluhm	Germany
Census of Arctic Zooplankton	
Russell Hopcroft	Canada
Ksenia Kosobokova	Russia
Biodiversity of Adult Fish	
David Stein	USA
Catherine Mecklenburg	USA
Boris Sheiko	Russia

Biodiversity and Ecology of Juvenile	e Fish
Brenda Holladay	USA
Nutrient and Primary Productivity S	Studies
Terry Whitledge	USA
Sang Lee	Korea
CTD and Video Plankton Recorder	
Marshall Swartz	USA
Mark Dennett	USA

University of Alaska University of Alaska
University of Alaska Shirshov Oceanology Inst.
NOAA Pt. Stephens Research Zoological Inst.

T T			1 1	
1111	Jergii	\mathbf{V}	28	22
		y Ul	LCIO1	<u>n</u> u

University of Alaska University of Alaska

Woods Hole Woods Hole

Bering Strait- Physical Oceanography-Mooring

Sarah Thornton
Igor Lavrenov
Alexander Ipatov
Microbial reactions and fluxes
Alexander Savvichev
Igor Rusanov
Side looking sonar and video
Viacheslav Gladysh
Boris Smirnov
Paleoceanography
Vitaly Kaulio
Atmospheric Contaminants
Maxim Ivanov

Canada Russia Russia Russia Russia Russia

Russia

Russia

Univ. of Alaska AARI AARI Inst. Of Microbiology Inst. Of Microbiology VNIIOkeangeologia VNIIOkeangeologia VNIIOkeangeologia

Pacific Oceanological Institute

Western Bering Strait Mooring Deployments

Faunal distributions for the census of marine life in the subarctic/Arctic

Assess potential productivity changes accompanying global climate change in the subarctic/Arctic

High speed CTD transects across Herald shelf valley

	32	104	106	109	112	45	49	50	53	55	57	59	64	68	69	74
0,5	350	77	86	2.5	5.0	36	20	21	31	37	21	30	3.6	2.9	112	97
5	270	57	67	4.8	10.5	27	19	26	50	76	23	33	82	14	150	104
10	120	-	26	1,7	-	16	16	28	53	140	-	-	290	13	9	130
15	46	8.5	10	0.5	1,2	5	15	9.4	46	290	-	-	206	-	9	75
25	3.5	0.5	0.3	0.00	0.04	14	5.	2.6	34	130	75	195	42	0.4	24	18 '
45	-	-	-	- ,	-	0.11	0.4	0	0.9	-	-	-	-			
0 2	3210	680	720	38	100	420	404	390	1400	4700	1070	2400	200		970	2020
₽ ÿ B	-	0.52	0.92	0.07	0.25	0.08	-	3.0	1.7	0,29	0,2	0,86	0,43		0.32	1.0
	'	1.3	0.78	0.56	0,40	5.0	-	0.13	0.84	16	5.0	2.8	0.46		3.0	1,9

Primary product of the Bering and Chukchee seas (mgC/m² per day)

Korsak (in press)

.

Areal primary productivity by region. Numbers in parentheses indicate the mean \pm standard deviation.

		mg	С			
	Station	$m^{-2} d^{-1}$	$m^{-2} hr^{-1}$			
Bering Shelf	4	918.33	91.81			
" "	6	105.63	11.02			
	9	744.33	60.38			
	18	1222.98	111.71			
11 11	19	751.85	/ 82.53			
Bering Shelf	35	483.13	56.93			
		(704.37 ± 381)	(69.1 ± 34.95)			
Station 36	36	15252.19	1596.61			
Bering Deep	109	1885.09	256.12			
" "	112	1769.59	140.00			
Bering Deep	113	2041.39	273.99			
· · · *		(1898.7 ± 136)	(223.4 ± 72.8)			
Gulf of Anadyr	24	3599.01	405.45			
	27	548.11	71.99			
Gulf of Anadyr	32	1698.07	173.52			
		(1948.4 ± 1540)	(216.9 ± 170.9)			
Anadyr Strait	41	1722.97	175.39			
Bering Strait	83	206.92	24.90			
Bering Strait	86	1417.18	164.80			
Chukchi Sea	45	503.55	72.66			
	49	1222.03	127.40			
" "	50	375.61	51.03			
	55	5450.28	396.71			
	57	264.88	32.71			
" "	59	1949.28	302.77			
	64	150.64	18.41			
	69	4444.64	521.93			
Chukchi Sea	74	241.80	32.32			
		(1622 ± 1987)	(172.9 ± 186.8)			
Chirikov Basin	89	3163.37	346.09			
" "	96	760.05	81.91			
	100	604.25	89.60			
	102	143.00	23.76			
Chirikov Basin	106	494.46	39.73			
		(1033 ± 1212)	(116.2 ± 131.5)			

Zeeman (in press)

			Below Ice						
	S	Surface		Chl maxi	orophyll- mum laye	r	Surface		
	Mean	S.D.	n	Mean	S.D.	n	Mean	S.D.	n
Temperature (°C)	-1.19	0.22	6	-0.89	0.34	6	-0.62		1
Salinity (‰)	26.96	0.66	6	31.75	0.21	6	26.42		2
Light ($\mu E/m^2 s$)	963	364	8	19	7	8	29	17	3
Nitrate (µ mol/l)	0.02	0.04	6	4.52	2.37	6	0	0	3
Ammonium (µ mol/l)	0.21	0.16	6	0.40	0.36	6	0.18	0.24	2
Total Chl a (mg Chl a/m ³)	0.04	0.02	8	0.60	0.31	6	0.02	0.01	3
Biomass of large (>20 μm) phytoplankton (%)	13.6	4.9	7	33.7	28	5	21	7.6	3
Biomass of small (0.7 - 5 μm) phytoplankton (%)	69.3	10.6	7	44.4	26	5	49	13	3
C/N ratio (atom/atom)	8.57	2.53	8	7.86	2.53	5	10.9	0.9	3
Assimilated C/N ratio (atom/atom)	15.9	11	7	3.6	9.1	3	13.8	9.37	3
POC/Chl a (w/w)	314	216	8	16.8	11.2	5	181	25	3
PON/Chl a (w/w)	26	18	8	2.3	2.3	5	14	0.8	3
Carbon specific uptake (h ⁻¹)	0.000 679	0.00 037	9	0.003 6	0.000 34	3	0.0002 28	0.000 161	3
Carbon absolute uptake (mg C/m ³ h)	0.040	0.02 7	9	0.257	0.079	3	0.0125	0.011 4	3
Nitrate specific uptake (h ⁻¹)	0.000 291	0.00 023	9	0.002 354	0.003 081	3	0.0000 84	0.000 054	3
Nitrate absolute uptake (mg NO ₃ /m ³ h)	0.001 008	0.00 118	9	0.014 4	0.015 3	3	0.0002 88	0.000 209	3
Ammonium specific uptake (h ⁻¹)	0.001 138	0.00 047	9	0.006 851	0.007 04	3	0.0002 84	0.000 031	3
Ammonium absolute uptake (mg	0.001	0.00	7	0.068	0.050	3	0.0007	0.000	3

primary production results

- Nutrient concentrations were found to limit PP in surface layer while light was limiting in the chlorophyll maximum
- High chlorophyll was observed on the bottom of ice and in chlorophyll maximum at 50m
- Small phytoplankton (<5µm) was >70% of biomass in surface and 44% in the chlorophyll maximum layer
- f-ratio was 0.22-0.26
- Estimated annual production was 1.04 gC m⁻²

Implications of climate change to primary production

- 2-3% of surface irradiation passed through 2.3 m of ice
- Light at depth of chl max was 2% of surface
- In situ incubations indicate that 30% reduction in ice thickness will increase PP by 2-3 fold
- Less ice cover may increase the growing season but increase nutrient limitation

