Modeling North Pacific O₂ changes

Curtis Deutsch, Steve Emerson, Luanne Thompson

- Motivation: Why O₂? Why North Pacific?
- Validation: Model vs. Data
- Attribution: Biology vs. Physics
- Questions, Conclusions, Caveats

Motivation

Oxygen is a tracer of both physical and biological changes

Apparent
Oxygen
Utilization

$$AOU = O_2^{sat} - O_2$$

$$\Delta O_2 = \Delta O_2^{sat} - \Delta AOU$$

North Pacific O₂ changes

Oxygen has been accurately and widely measured for several decades, allowing changes to be detected.

Physical-Biological connections?

Biogeochemical GCM

• Isopycnal GCM (HIM)

North Pacific domain (20°S – 60°N) 1° resolution, 14 layers + mixed layer Offline tracer advection/diffusion

Historical atmospheric forcing

NCEP, 1948-2000 Winds, Temp only (no salinity change)

OCMIP protocol

surface PO₄ restoring
"Martin curve" remineralization
DOP with a 1-year half-life
constant O₂:P stoichiometry (170:1).

• O₂ set to saturation in mixed layer

Annual Mean Oxygen

O_2 changes: σ_{Θ} 26.6

Finding Fingerprints

Experiment	AOU changes present
1) Total variability	$\triangle AOU_1 = \triangle AOU_{vent} + \triangle AOU_{bio} +$
2) Constant OUR	$\triangle AOU_2^{\text{circ}} \triangle AOU_{\text{vent}} + \triangle OU_{\text{bio}} +$
3) Constant OUR + constant AOU _o	AOU _{sire} AOU _{vent} + AOU _{bio} +

Causes of oxygen change (1990's-1980's) σ_{Θ} 26.6

O₂ changes (relative to 1960's)

Z (Layer): 12 TIME: 05-MAY-1960 02:13

ETNP and Kuroshio Extension: Engines of O₂ variability

Causes of oxygen change (1990's-1980's) σ_{Θ} 25.8

Integrated O₂ changes

Conclusions

- A hind cast model of the North Pacific with simple biogeochemistry captures many of the observed AOU/O₂ changes in the thermocline over the past few decades.
- Circulation and ventilation changes are the dominant drivers of these changes in the lower ventilated thermocline.
 O₂ may be a useful physical tracer in these regions.
- Simulated O_2 changes include both sustained decadal trends as well as large-scale transient anomalies that propagate across the basin.
- Physically forced overall O_2 increases are compensated by enhanced biological O_2 consumption, which contributes substantially to upper thermocline O_2 variability.

Extra material

Thermocline Oxygen Variability

Standard Deviation of Annual Mean 02 [uM]

Biological changes

Chlorophyll concentration and ¹⁴C Primary Production have increased in surface waters of the Subtropical Pacific between the 1970s and 1990s (Karl et al, 2000).

Changes in N:P stoichiometry also point to an increase in N₂ fixation in recent decades, with significant implications for the biological pump in the subtropical Pacific (Karl et al., 1997, 2002)

Physical variability: surface

THE PACIFIC DECADAL OSCILLATION

The PDO is a spatial pattern of SST variability.

The pattern oscillates with a period of a few decades.

From http://tao.atmos.washington.edu/pdo

Physical variability: thermocline

Surface variability propagates into the thermocline, altering large-scale features of the circulation, like an intensified Kuroshio current in the 1980's.

from Deser et al., 1999

Physical Model

- Isopycnal coordinate (Hallberg Isopycnal Model)
- North Pacific domain (20°S 60°N, with sponges)
- 1 degree horizontal resolution
- 14 isopycnal layers + Kraus Turner mixed layer
- Historical atmospheric forcing (NCEP, 1948-2000)
 Temperature and wind only; salinity restoring
 - Offline tracer advection/diffusion routine

Export Production

Questions and Caveats

- Role for salinity forcing?
- Consequences of ETNP engine: N*
- Connecting surface/thermocline fingerprints

Model oxygen change: 1990's – 1980's

O₂ Changes: 150° W

Trends vs. Transients

Attribution

Export flux change: 1990's – 1980's

Decadal mean changes in surface export production are significant (~ 25%)...

...but they bear little resemblance to subsurface oxygen changes in the lower ventilated thermocline.

Surface fingerprints: ventilation

An increase in AOU due to decreased ventilation will cause changes in air-sea fluxes of both O_2 and CO_2 coincident with the ventilation change...

Surface fingerprints: export

Similar AOU anomalies may be caused by increased export flux, with very different signatures of O₂/CO₂ gas exchange.

A role for the CCS?

The California Current System exhibits significant physical variability.

From Bograd et al. 2003

Is this variability important to the biogeochemistry of the broader basin?

Biogeochemical Consequences

Nitrate deficits produced in the oxygen minimum zone stimulate N_2 fixation in the subtropical gyre

Does variable entrainment from the OMZ into the gyre contribute to the changes in subtropical N_2 fixation inferred at station ALOHA?

Questions

- What are the gas exchange fingerprints associated with subsurface O₂ variability?
- How can trends in air-sea CO₂ flux be used to better constrain the relative roles of biology and physics.
- Are there other biogeochemical consequences of climate forced O₂ variability?