

A 5-Yr Inter/Multi Disciplinary Study off the Washington State/British Columbia Coasts

Barbara Hickey and Vera Trainer,

Evelyn Lessard, William Cochlan, Mark Wells, Charlie Trick, Rick Thomson, Mike Foreman, Angelica Pena, Laurie Connell, Dana Woodruff, Rick Stumpf, Susan Geier, Mike Foy, Nancy Kachel, James Postel, Amy MacFadyen, Nicolaus Adams, Brady Olson, Megan Bernhardt, Jeannie Bush, Brent Leithauser, Sheryl Day, Keri Baugh, Jack Weckell, Brian Bill, Julian Herndon, Nicolas Ladizinsky, Margaret Hughes and many others

Acknowledgements: National Science Foundation and NOAA Coastal Ocean Program

Domoic acid on the Washington coast

Our Razor Clam Fishery

Distribution and Abundance of *Pseudo-nitzschia* spp. at Sea Surface

Horner et al. (2000), S. Afr. J. Mar. Sci.

Particulate Domoic Acid along U.S. West Coast in 1998

Data from Trainer lab.

The Juan de Fuca Eddy and the Washington Coastal Upwelling Region

increase in PN and DA occurs after a period of persistent upwelling followed by a storm

ECOHAB PNW Working Hypothesis

The model divides the region into four sampling regimes based on expected property differences.

I. Eddy Regime

II. Aged Eddy Regime

III. Nearshore Upwelled Water Regime

IV. Aged Nearshore Upwelled Water Regime

STUDY OBJECTIVES

- To determine the physical/biological/chemical factors that make the Juan de Fuca eddy region more viable for growth and sustenance of toxic *Pseudo-nitzschia* than the nearshore upwelling zone;
- To determine the combination of environmental factors that regulate the production, accumulation, and/or release of domoic acid from *Pseudo-nitzschia* cells in the field;
- To determine possible transport pathways between domoic acid initiation sites and shellfish beds on the nearby coast.

ECOHAB PNW Program Elements and PI Responsibility

Component	Techniques	Investigator
Project Management		Hickey, Trainer
Currents	Moored arrays, ADCP surveys	Hickey, Thomson
Winds	Moored arrays, NDBC/EC buoys, MM5 Model	Hickey, Foreman
Surface Currents	Drifters	Hickey
Standard Water Properties (T, S,	Surveys, flow-through	Hickey, Cochlan,
Fluor., PAR, O_2), <i>PN</i> abundance	fluorometry, T,S, FlowCAM, CTD, moored arrays	Lessard
Chlorophyll a and Phaeopigments	In vivo and in vitro Fluorometry	Trainer, Cochlan
Domoic Acid (particulate & soluble)	Receptor binding assay, Mist Alert, Cell bioassay	Trainer, Trick
Dissolved Nutrients (inorganic and organic)	Lechat autoanalyzer, surveys and moored samplers	Cochlan, Trick
Fe, Other Trace Metals	Flow injection, extraction/ICP- MS	Wells
Pico and Nanoplankton	FCM	Trick
Autotrophic/Heterotrophic	FlowCAM, microscopy/image	Lessard
Microplankton	analysis	
Pseudo-nitzschia Taxonomy	SEM, probes	Trainer
Molecular Probe Development	PCR	Connell
Antibody and Assay Development	Polyclonal, cell fluorescence	Trainer, Trick
Toxic Pseudo-nitzschia Species	Sandwich hybridization assays	Trainer, Connell
Abundanc e- rRNA probes	(SHA); FISH, FCM	Lessard, Trick
Nitrogen Up take Capabilities	¹⁵ N nitrogen kinetics (NO ₃ ,NH ₄ , Urea)	Cochlan
Nutrient Stress and DA Production	Modify nutrient ratios	Trick, Cochlan,
	incubation expts.	Trainer
Fe, Cu Stress and Effects on DA	Competing ligand 'grow-outs',	Cochlan, Wells,
Production as a Chelator	Fe uptake kinetics, P vs. E expts. using ¹⁴ C	Trick, Trainer
Grazing/Growth of <i>PN</i> and other Phytoplankton	Dilution method ? FlowCAM, microscopy, SHA, size-	Lessard
	fractionated chlorophyll a	
Identity of Grazers of PN Species	Single-cell FISH and immunoassays	Lessard
Bacterial Abundance and Productivity	AO counts; ³ H-leucine uptake	Cochlan
Circulation Modeling	Numerical model	Foreman
Trophic Modeling	NPZ model	Pena
Biophysical Modeling	1-D and 3-D models	Foreman, Pena

- 1. Identify water masses and transport processes (Hickey)
- 2. Determine in-situ nutrient and chemical (e.g., metals) fields (Cochlan, Wells)
- 3. Measure plankton community structure, presence/absence and toxicity of Pseudo-nitzschia spp., and potential effects of domoic acid on grazing (Trainer, Trick, Lessard, Connell)
- 4. Conduct ship-based incubation studies to investigate factors responsible for toxin production (Trick, Cochlan, Trainer and Wells)
- Develop a bio-physical model that captures water transport and (toxic) plankton dynamics (Thomson, Foreman, Pena)

Pseudo-nitzschia species and toxicity, Washington State

Pseudo-nitzschia species and toxicity, Washington State

Preliminary Summary

- Juan de Fuca eddy is a persistent feature of coastal Vancouver Island and Washington State whose dynamics and driving forces are not understood.
- These dynamics appear to be ideal for breeding toxincontaining *Pseudo-nitschia*, for reasons not yet understood
- There is a large season and interannual variability in the abundance of Pseudo-nitzschia, and the presence and absence of toxin
- Toxin production and release by the cells varies according to both iron and copper supply
- The Juan de Fuca eddy increasingly appears to be a bioreactor that can export toxicity to both Vancouver Island and Washington State shorelines.