DO SQUID FISHING LIGHTS AFFECT THE NITROGEN CYCLE IN THE SEA OF JAPAN?

Tadanori Fujino, Hidetada Kiyofuji, Kazushi Miyashita and Ryo Kawabe

HOKKAIDO UNIVERSITY

For sustainable fishing in the 21th century

We need to evaluate the impact of fishing on the whole Marine ecosystem

Squid fishery in the Sea of Japan

Satellite images of Squid fishing boats (Kiyofuji 2002)

Extensive artificial light in the night sea

Roles of the diurnal migrating mesopelagic <u>organisms</u> <u>Biological pump</u>

Connecting the pelagic and mesopelagic ecosystem through diurnal vertical migration

Pycnocline

Important to th pelagic food chain at night

Excretion of ammonia →Important source of nitrogen for primary production

Mesopelagic fish in the Sea of Japan

Maurolicus japonicus

Only mesopelagic fish

Estimated 3.3 million tons

What kind of impact by light?

Maurolicus muelleri distribution correlated with Isolumes in Norway (Baliño and Aksnes 1993)

Objective

Echogram of M.japonicus recorded Aug. 2001

Study outline

1.Underwater irradiance from squid fishing lights 2.Light correlated swimming depth change of *M. japonicus*

3.Nitrogen excretion by *M. japonicus*

Natural condition

Under squid fishing light

Material and Methods (1)

Underwater irradiance from squid fishing lights

MAY, SEP 2003

KFC3000 Quantitative echosounder

Tottori Prefecture Fisheries
Experimental Station
"Daiichi Tottori Maru"
(199t)

Material and Methods (2)

PRR600 Multi-wavelength radiometer

Irradiance for 6 wavelengths (μ W/cm2/nm) Total photon for 400-700nm (μ mol/ cm2/s)

May 2003: Right beside the ship

Sep 2003: 3m away from the ship

Downward irradiance of sunlight

Downward irradiance (*µ* W/nm/s)

Wavelength 490-520nm penetrates well Sunlight 490→520→443→565→412→670 Kd (Attenuation coefficient) at 490nm; May 0.074 , Sep 0.075

Downward irradiance of squid fishing light

Downward irradiance (*µ***W/nm/s)**

0-20m : 565 → 412→443→490→520→670nm >30m : 490nm penetrates best

Kd (Attenuation coefficient) at 490nm; May 0.097, Sep 0.087

Effect of the different light sources

Squid fishing light -Light source is close, effect of angle of the incident and refraction angle is important

How bright are squid fishing lights?

Simulation of isolume distribution according to ship size

•Length and width of ship \rightarrow Total area of the isolume

Future work

Correlation between swimming depth and underwater irradiance of *M. japonicus*.

Use 490nm wavelength

