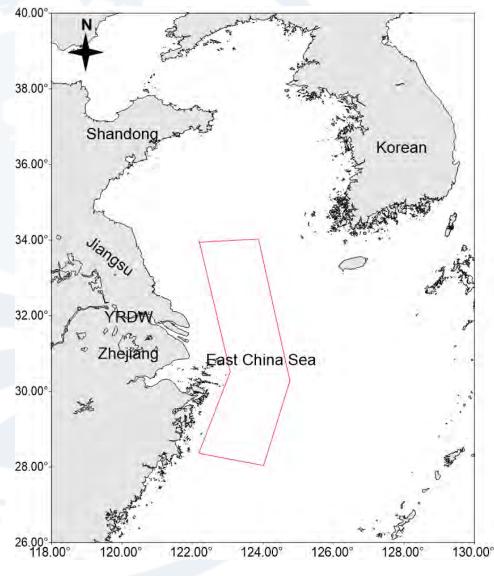
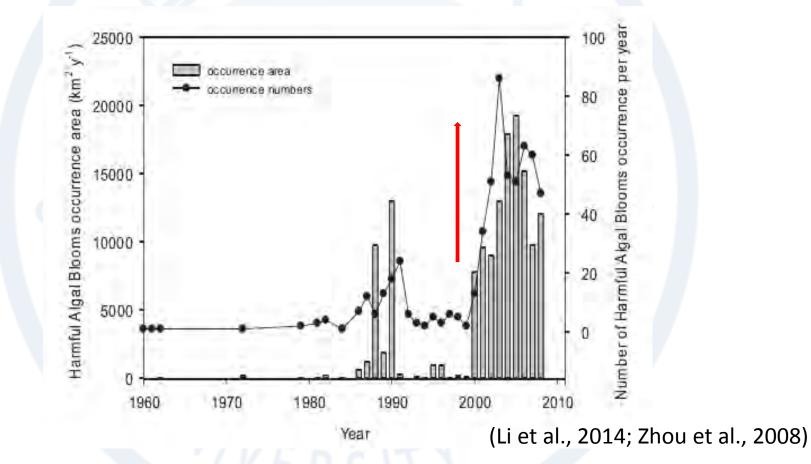


Effects of increasing nutrient loads on the competition and succession between two predominant red tide algae of East China Sea

Reporter : Yuping Zhou


The Tutor: Jiangtao Wang

Contents

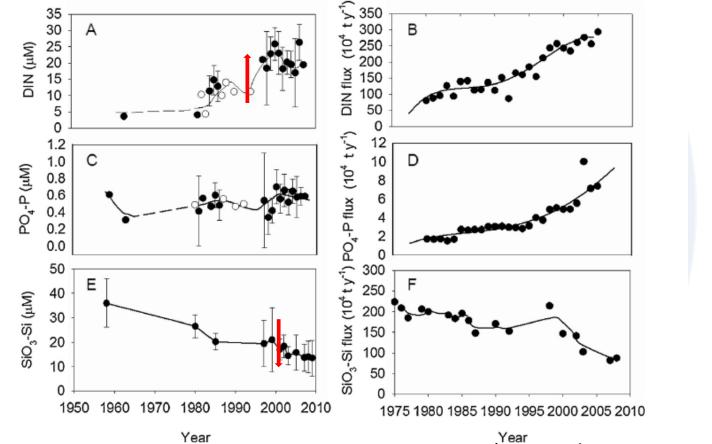

ECS

- Harmful algal blooms (HABs)
 have become a global
 phenomenon that impacts
 the coastal nations worldwide.
- In East China Sea, there are several Frequent HAB Areas experiencing extensive eruption of harmful algae and phytoplankton community change.

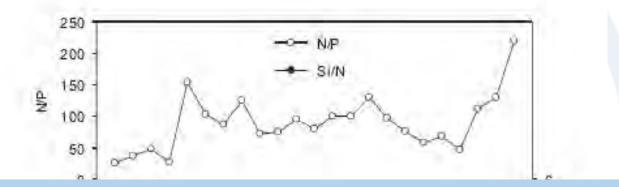

(Xu et al., 1994)

HAB in the ECS

HAB occurrence area has experienced anomalous changes since the 1980s and there was a notable increase after 2000


HAB Community in the ECS

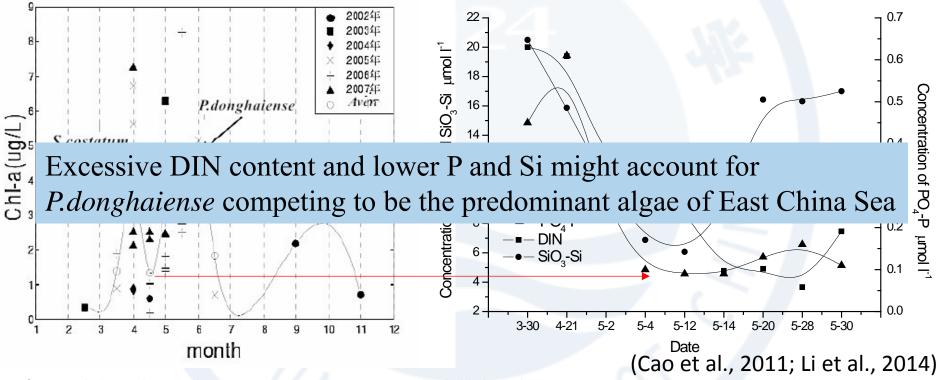
(Li et al., 2014; Wang et al., 2012)


 Since 2000, phytoplankton composition started to change and diatom
 Ecomals@aShtarpQOftodia999% was slow, inhite algaefwighthe call-abundance skapedings&0%/whereas dinoflagellate was below 3%.

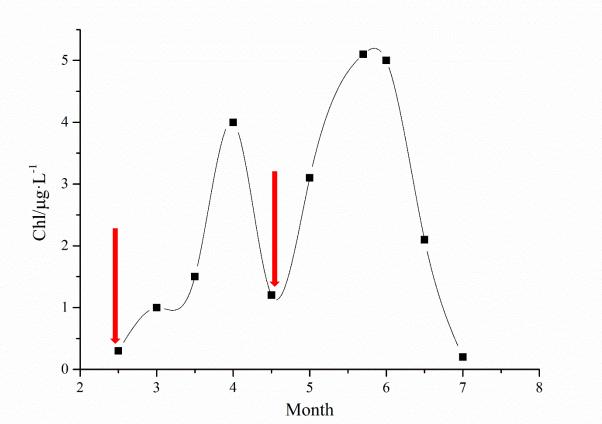
Nutrients and their fluxes in the ECS

(Sun et al., 2008; Li et al., 2014) rthateepas ary g Greased even its feat lizen and the presenced of chemical River. Changjiang plants along the

Nutrients structure in the ECS


Higher concentration of DIN, higher N/P and lower Si/N might account for the phytoplankton composition change in the ECS.

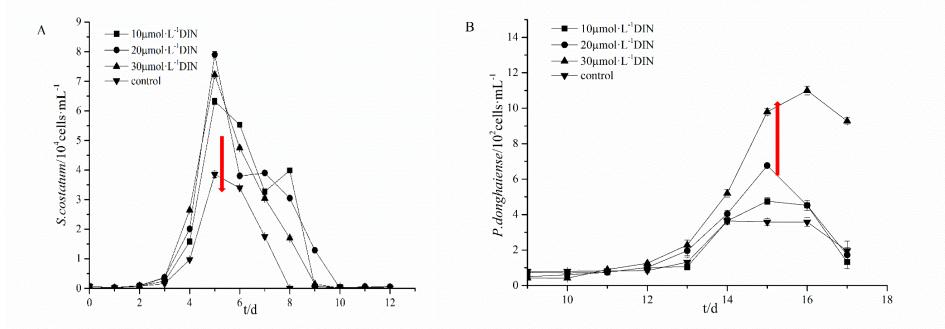
⁽Wang et al., 2012)


A clear increase in N/P was found, and N/P was approximately 40
 Si/Mgati960ccanasededramatically like fease & the 1/260s 10985, and 1990s, and then ideal for sealed to 2007 in 2007.

Algal competition and succession in the ECS

Chl a data from 2002 to 2007 exhibited a seasonal succession from S.costatum of April to P.donghaiense of May. When S.costatum almost disappeared, P and Si concentration have decreased to the lowest value, while DIN did not.

Experiment method

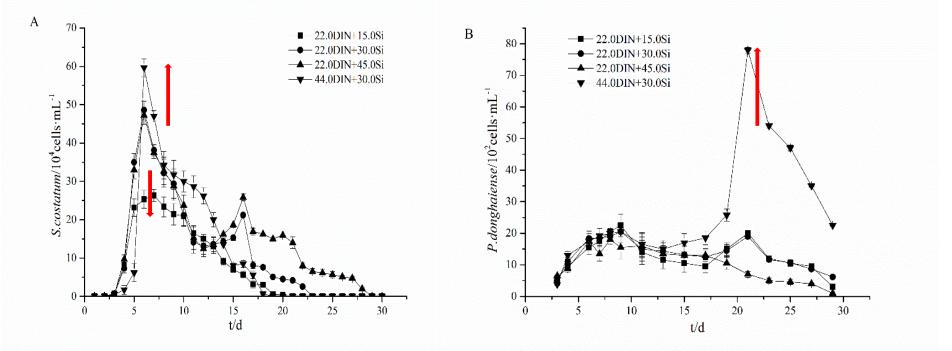


- *S. costatum* and *P. donghaiense* were mixed into all cultures with initial nutrient
- When *S.costatum* almost disappeared, cultures were resupplied with nutrient

Field mesocosm experiment

No	Initial concentration/µmol•L ⁻¹					
No. –	DIN	PO ₄ -P	Si			
А	10	1.49	15			
В	20	1.49	15			
С	40	1.49	15			
Control	10	1.49	7.1			

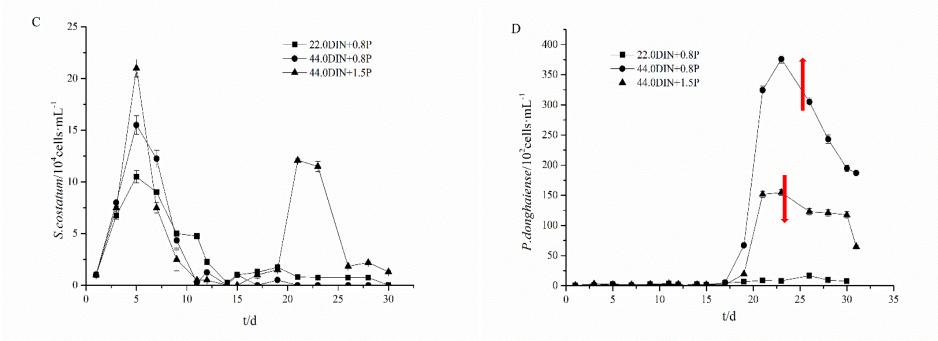
- Control was cultured with initial seawater, and the experimental groups were cultured with different DIN concentrations
- When *S.costatum* almost disappeared, cultures were resupplied with initial nutrient content



- > Lower Si concentration limited the growth of *S.costatum*,
- Higher concentration of DIN stimulated the growth and maxiconcentration of *P.donghaiense*

Indoors experiment

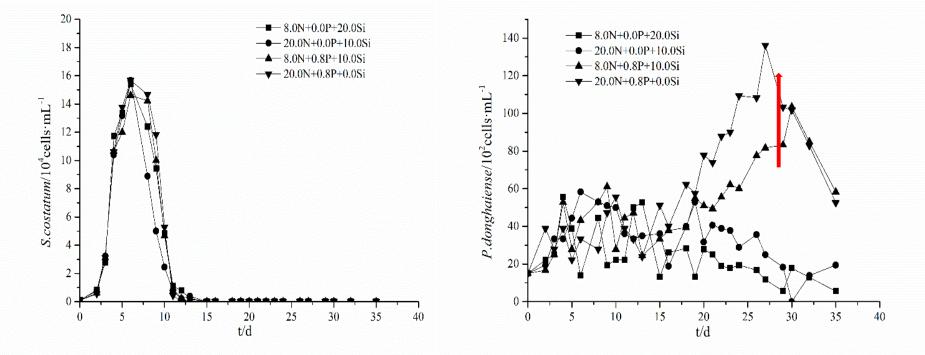
No.	Initial concentration/µmol•L ⁻¹			24	Resupplied concentration/µmol•L ⁻¹			
	DIN	PO ₄ -P	Si	N/Si	DIN	PO ₄ -P	Si	
A	22.0	0.8	15.0	1.5	22.0	0.8	15.0	
В	22.0	0.8	30.0	0.9	22.0	0.8	15.0	
С	22.0	0.8	45.0	0.5	22.0	0.8	15.0	
D	44.0	0.8	30.0	2.0	22.0	0.8	15.0	


- All cultures were initially added with different DIN and Si, and the experiments were cultured under different N/Si
- When *S.costatum* almost disappeared, cultures were resupplied with constant nutrient

Lower Si concentration limited the growth of *S.costatum*, and when N/Si was less than 1, the addition of DIN would stimulate its growth
 Higher N/Si caused by higher concentration of DIN would stimulate the growth and abundance of *P.donghaiense*

		Initial			Resupplied			
No.	conce	concentration/µmol•L ⁻¹			concentration/µmol•L ⁻¹			
	DIN	PO ₄ -P	Si	N/Si	DIN	PO ₄ -P	Si	
A	22.0	0.8	11.0	2	22.0	0.8	11.0	
В	44.0	0.8	11.0	4	22.0	0.8	11.0	
C	44.0	1.5	11.0	4	22.0	0.8	11.0	

- All cultures were cultured with higher N/Si (N/Si>1), and they were cultured with different DIN and P
- When *S.costatum* almost disappeared, cultures were resupplied with constant nutrient content



Higher N/Si would stimulate the cell abundance of *P.donghaiense* The excessive P would stimulate the recrudescence of *S.costatum*, and decrease the relative abundance of *P.donghaiense*.

Outdoors experiment

		Initial			Resupplied			
No.	conce	concentration/µmol•L ⁻¹			concentration/µmol•L ⁻¹			
	DIN	PO ₄ -P	Si	N/Si	DIN	PO ₄ -P	Si	
Α	20.0	0.8	20.0	1.5	8.0	0.0	20.0	
В	20.0	0.8	20.0	0.9	20.0	0.0	10.0	
С	20.0	0.8	20.0	0.5	8.0	0.8	10.0	
D	20.0	0.8	20.0	2.0	20.0	0.8	0.0	

- All experiments were cultured initially with constant nutrient content
- When *S.costatum* almost disappeared, they were resupplied with different DIN, P and Si

- When the culture were resupplied with P, excessive DIN would stimulate the growth of *P.donghaiense* to be the predominant algae.
- The culture resupplied with higher Si and without P would inhibit the recrudescence of S.costatum

- Large flux of DIN account for the increased occurrence area and number of HAB in ECS.
- Higher N/P ratio and N/Si led by higher DIN concentration would accelerate the dominance of *P. donghaiense*, and account for the increased abundance of dinoflagellate.
- Managers must be aware of the negative implications of not managing N loading into this system as N may significantly impact red algae bloom size and structure.

- I appreciate the support of 973 Project (2010CB428701) and National Natural Science Foundation Committee (41076065).
- ➤ I gratefully appreciate the guidance of my tutor Jiangtao Wang.
- ➤ I appreciate the financial support from PICES.

Thanks for your listening!

