Calcium carbonate saturation state and ocean acidification in Tokyo Bay, Japan

Michiyo Yamamoto-Kawai

(TUMSAT)

Natsuko Kawamura, Tsuneo Ono, Naohiro Kosugi,

Atsushi Kubo, Masao Ishii, and Jota Kanda

- Shallow, semi-enclosed bay
- Surrounded by highly urbanized areas
- Receives freshwater and nutrients from rivers and sewage treatment plants
- One of the most eutrophicated coastal environments in the world

Tokyo Bay

ranked distribution of Primary Production

Red tide Blue tide Hypoxic water

Ocean acidification could give an additional stress to the ecosystem of the bay

[Cloern et al., 2014]

First observations of Ω in Tokyo Bay, from 2011 to 2012

[Yamamoto-Kawai et al., Journal of Oceanography, 2015]

Questions

- Is $\Omega_{aragonite}$ already < 1 in Tokyo Bay? If not, when will it be reached?
- How does Ω change seasonally?
- What are factors controlling seasonal variation of Ω in Tokyo Bay?
- How much did human activity change Ω ?

Observations

April 2011~January 2012 (every month) Stations A: 23m, Innermost bay B: 26m, Middle bay Sampling and analysis CTD-Rosette, RINKO-O₂ DIC, TA, Nutrients and Chl.a 35.2°I

$\boldsymbol{\Omega} \text{ and } \boldsymbol{pCO_2}$: CO2sys program

(K₁ and K₂: Lueker et al., 2000; KSO₄: Dickson, 1990)

 $\Omega_{
m aragonite}$

Sta. B (Middle bay)

Sta. A (Innermost bay)

• Is $\Omega_{aragonite}$ already < 1 in Tokyo Bay? -NO!

²aragonite

- How does Ω change seasonally?
- What are factors controlling seasonal variation of Ω in Tokyo Bay?

Temperature & Salinity

DIC & TA

Sta. B (Middle Bay)

Sta. A (Innermost Bay)

TAumol/kg

TAumol/kg

Chlorophyll *a* & DO %

Oxygen Saturation [%]

Oxygen Saturation [%]

$pCO_2 \& \Omega_{aragonite}$

Sta. B (Middle Bay)

1.55~5.12

- What are factors controlling seasonal variation of Ω in Tokyo Bay?
 - Freshwater input (surface) Sta. A >> Sta. B
 - Photosynthesis (surface) Sta. A > Sta. B
 - Remineralization (bottom) Sta. A >> Sta. B

Innermost bay has lower Ω and larger seasonal variability

- How much did human activity change Ω in Tokyo Bay?
 - 1. Freshwater regulation
 - 2. Eutrophication
 - 3. Anthropogenic CO₂

Freshwater regulation

Freshwater input to Tokyo Bay

341 m³ s⁻¹ in 1947-1974

424 m³ s⁻¹ in 2002-2003 **24 % up**

introduction of freshwater to the metropolitan region

from outside of the drainage basins [Okada et al., 2007]

$$\Omega_{w/o-FW}$$
 from $S_{w/o-FW}$ $TA_{w/o-FW}$ pCO_{2-obs} and T_{obs}

Increased FW might have lowered Ω ar by up to 0.3

Eutrophication

[Ishii et al, 2008]

Eutrophication

 $\Delta DO + - 1.5 \text{ ml } L^{-1} (67 \ \mu \text{mol } \text{kg}^{-1}) = \Delta DIC - + 46 \ \mu \text{mol } \text{kg}^{-1}$ $\rightarrow \Delta \Omega ar + - 0.45 \qquad (O_2:C = -170: 117)$

Eutrophication has increased Ωar by 0.45 in summer surface water

has <u>decreased</u> Ωar by 0.45 in summer <u>bottom</u> water

 $\Delta \Omega \alpha r + -0.4 \sim 0.6 (O_2/C = 1 \sim 1.58; Fraga et al. 1998)$

Anthropogenic CO₂

 $\mathsf{DIC} = \mathsf{C}_{\mathsf{EQ}} + (\Delta \mathsf{C}_{\mathsf{Diseq}} + \Delta \mathsf{C}_{\mathsf{Bio}})$

- C_{EQ} DIC in equilibrium with atmospheric CO_2 (280 vs 400 ppm)
- ΔC_{Diseq} air-sea disequilibrium
- ΔC_{Bio} biological activity

(cf. Gruber et al. 1996; Sabine et al. 2002; Yamamoto-Kawai et al. 2013)

Increased atmospheric CO_2 from 280 to 400 ppm alone could have decreased Ω ar by 0.6

- How much did human activity change Ω ?
 - 1. Freshwater regulation -0.3
 - 2. Eutrophication +/- 0.45 surface/bottom
 - 3. Anthropogenic CO_2 -0.6

• When will $\Omega_{aragonite} < 1$ be reached?

 $DIC = C_{EQ} + (\Delta C_{Diseq} + \Delta C_{Bio})$

PI

Summary and conclusions

- Ω_{aragonite} varied from 1.55 to 5.12 in the innermost bay in 2011/2012
- Seasonal variation of $\Omega_{aragonite}$ was much larger than in offshore waters

- Freshwater regulation, eutrophication and anthropogenic CO_2 have changed $\Omega_{aragonite}$ by 0.3 (-), 0.45 (+/-) and 0.6 (-), respectively
- Bottom water in innermost bay will reach seasonal aragonite saturation by 2060s (~50yrs earlier than offshore)

!! These are based on one-year observation and rough assumptions **!!**

- Need to continue our observation in Tokyo Bay, as well in other coastal regions of Japan
- Assessment of OA impact on organisms in each region is also required

Japan Coastal Ocean Acidification Project (JACOA)

Haruko Kurihara* (University of the Ryukyus) Michiyo Yamamoto-Kawai (Tokyo University of Marine Science and Technology) Masahiko Fujii (Hokkaido University)

*harukoku@sci.u-ryukyu.ac.jp

Monthly observations of DIC/TA, T, S pH sensor

2. Evaluating effects on the fisheries

