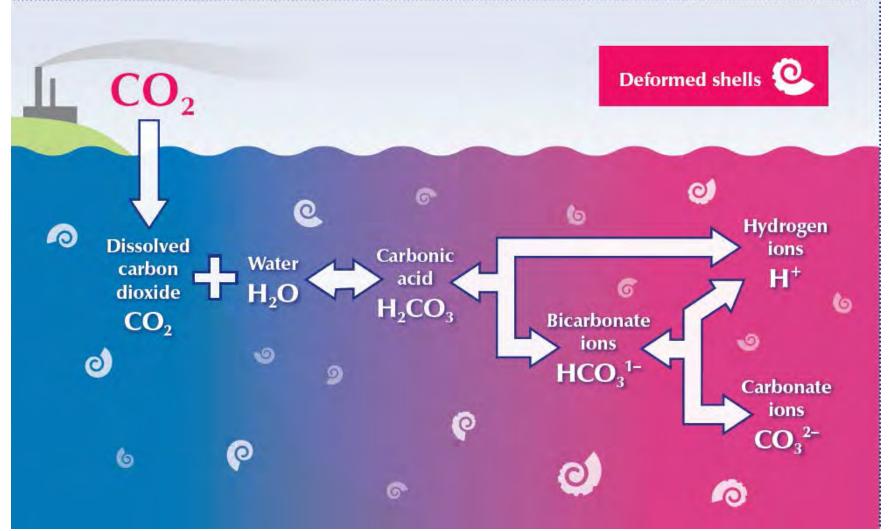


Variation of sea surface pCO₂ and controlling processes in cold seasons in the northern Yellow Sea, China

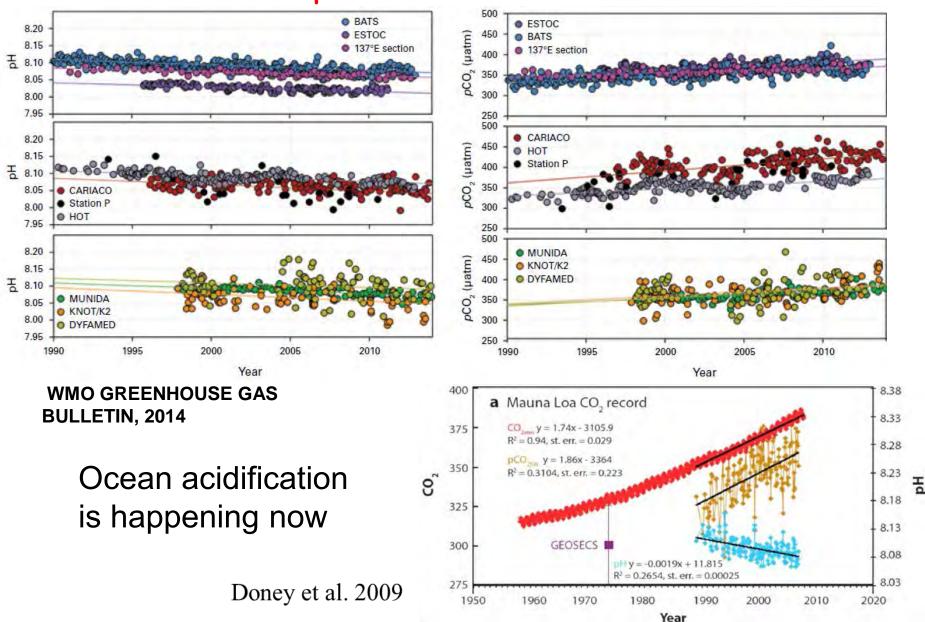
Juying Wang, Xuemei Xu, Huade Zhao, Kunpeng Zang and Nan Zheng

National Marine Environmental Monitoring Center, SOA, CHINA

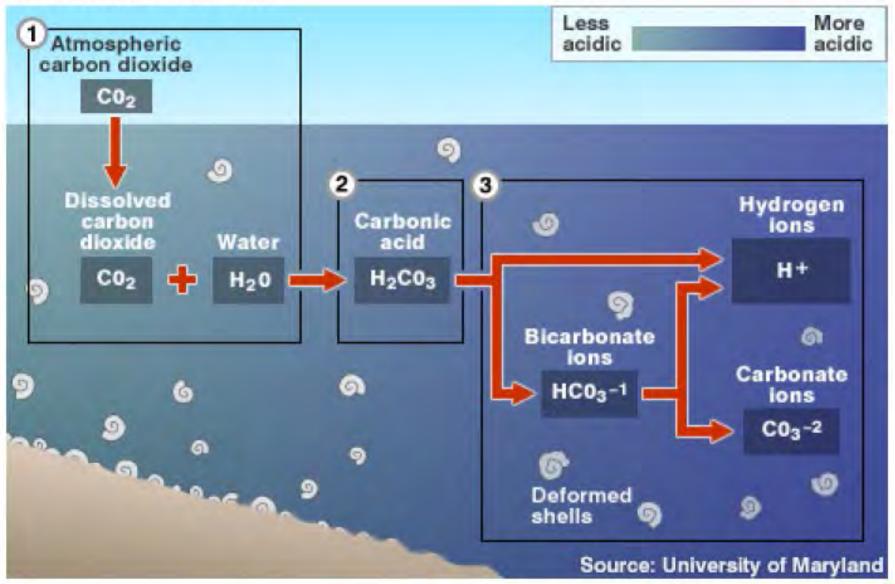
Oct 22, 2015


OUTLINE

- Background
- Monthly pCO₂ at A4HDYD station(YD Station)
- mmonthly pCO₂ in NYS
- Summary


Ocean Acidification: Global Warming's Twin

The burning of fossil fuels result in increased CO_2 in the atmosphere being taken up by the ocean resulting in it becoming more acidic.

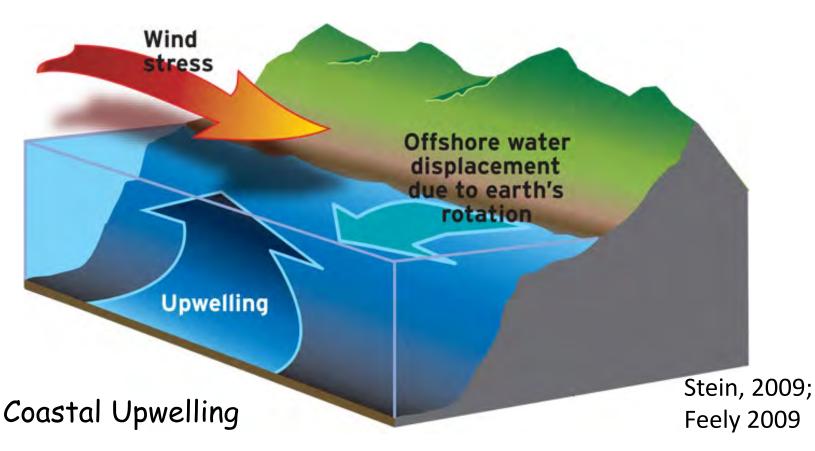

Source: Laffoley et.al. 2010. Ocean Acidification: Questions Answered.

Changes in surface oceanic pCO_2 (in matm) and pH from time series stations

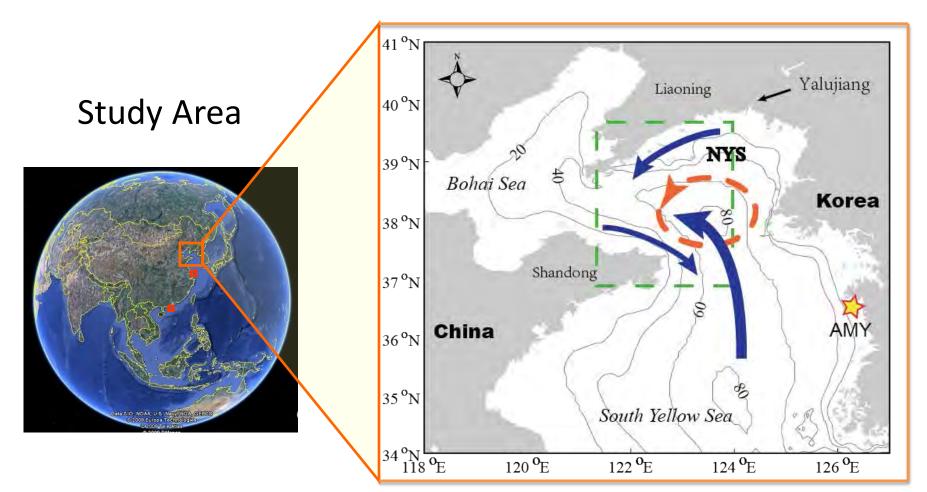
OA = carbonate chemistry perturbation

OCEAN ACIDIFICATION

Why coastal ocean CO₂?

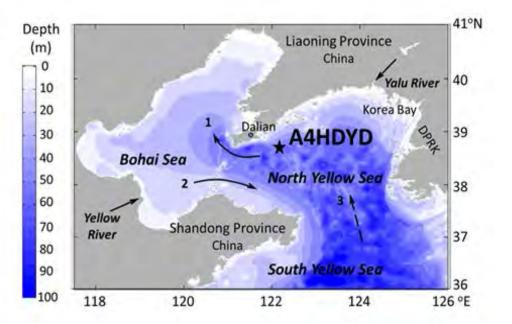

- 8% of the surface area of the global ocean
- 15-30% of the oceanic primary production
- 80-85% of the organic matter burial, primarily near large river deltas
- 90% of the sedimentary mineralization
- 50% of the deposition of calcium carbonate

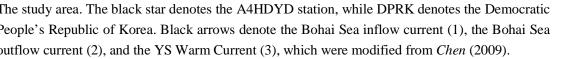
coastal oceans are disproportionately important in ocean carbon cycle


Distinct temporal/spatial variability: coastal waters

- Local Oceanography: coastal upwelling
- Metabolism Processes
- Regional Environ. Changes: eutrophication

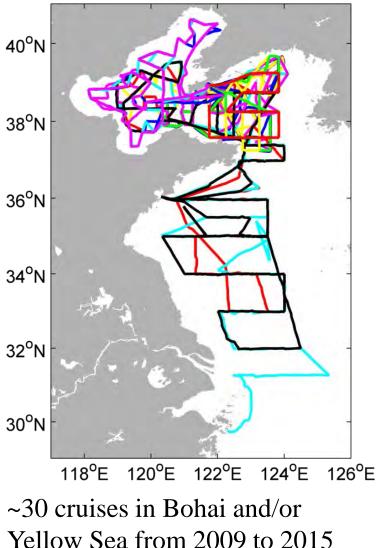
North Yellow Sea

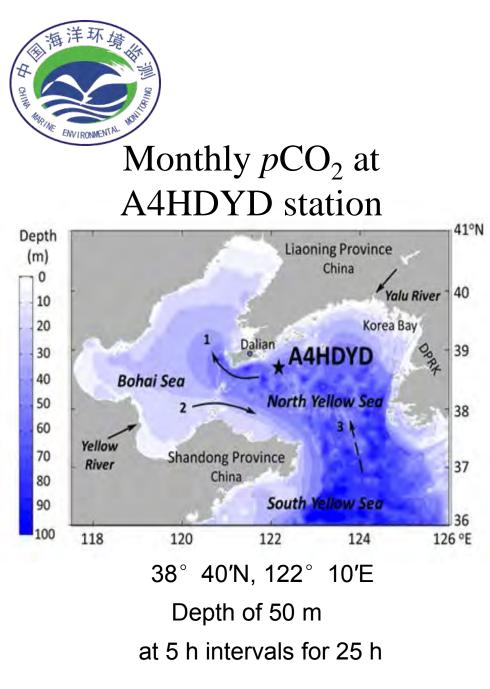




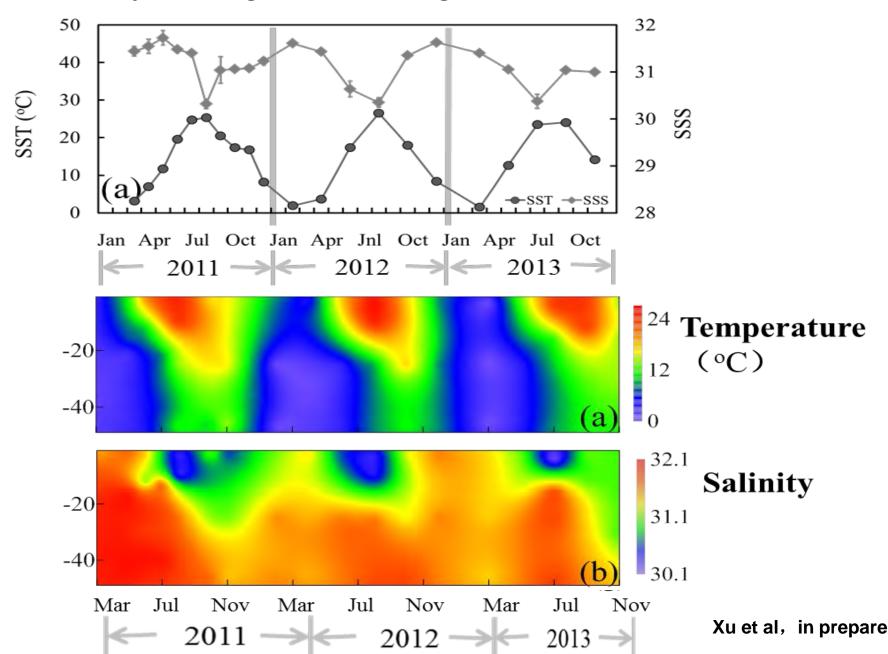
Zhai et al., 2013; Qiao et al., 1998; Miao et al., 1991; Chen, 2009)

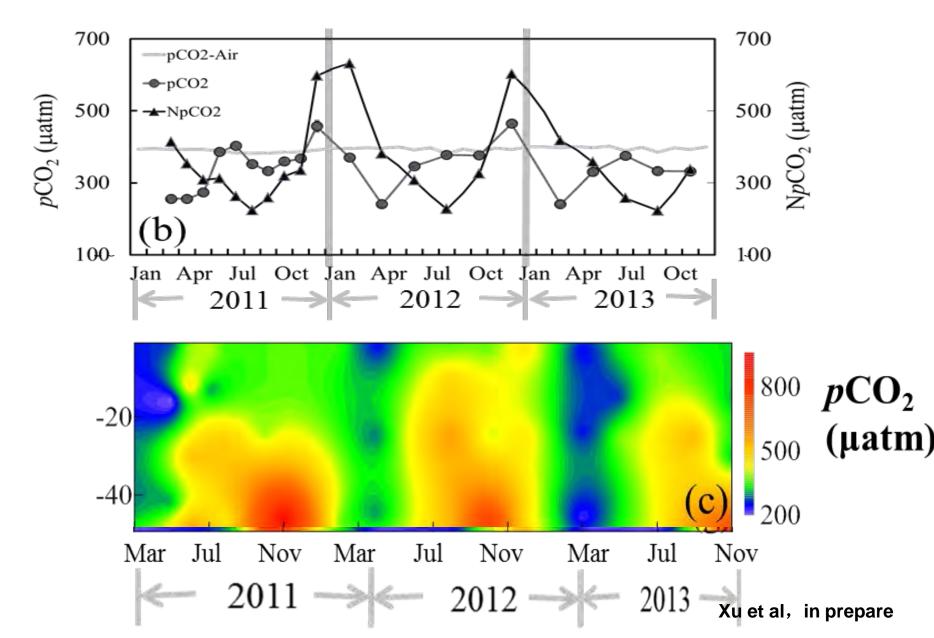
- Exchange water with Bohai Sea;
- relatively low salinity (31.5-32.5) compared with open oceans;
- nearly year-round weak counter clockwise gyre;
- summertime characterized by a pronounced stratification in the deeper region;
- Cold water mass, typically 5-11°C;
- Wintertime circulation is characterized by the Yellow Sea Warm Current (YSWC)


Monthly pCO_2 at A4HDYD station



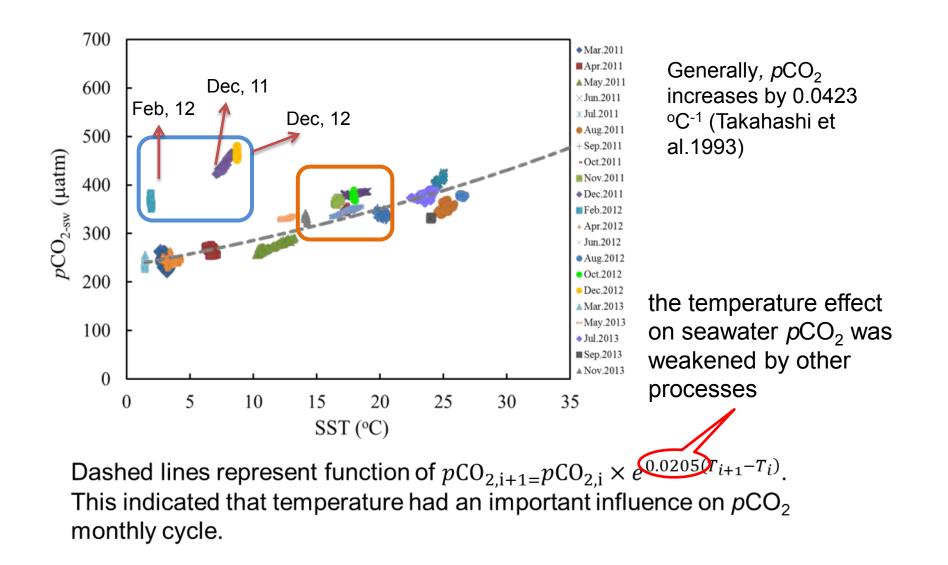
The A4HDYD station was surveyed 21 times on board R/V YiXing from March 2011 30° to November 2013 covering all the seasons

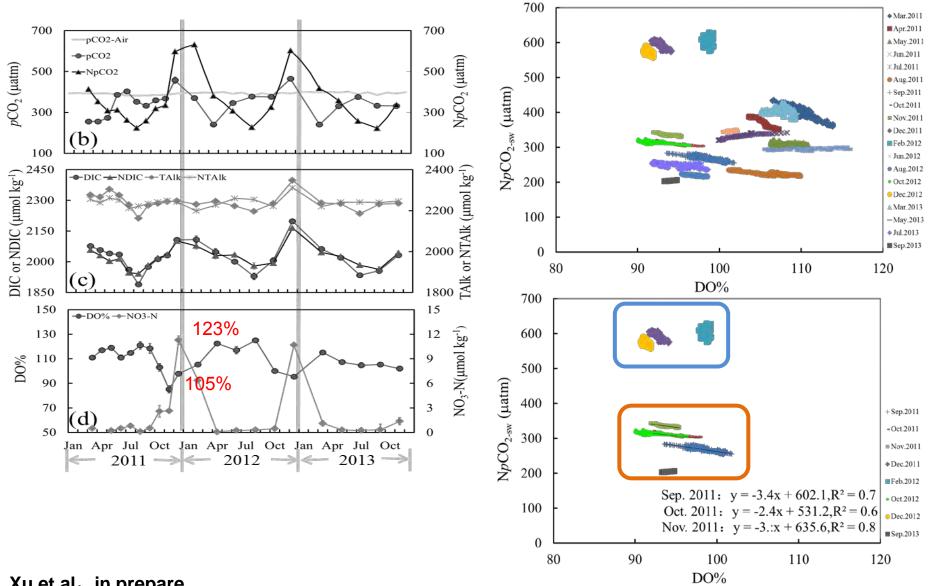

Underway pCO_2 in the NYS



	Surveying time	Sampling depth(m)		
1	28-29 March 2011	2,25,44		
2	27-28 April 2011	2		
3	15-16 May 2011	2,16,21,42		
4	22-23 June 2011	2,12,30,48		
5	27-28 July 2011	2,13,22,40		
6	26-27 August 2011	2,10,25,47		
7	26-27 September 2011	2		
8	23-24 October 2011	2,25,46		
9	3-4 November 2011	2,25,46		
10	19-20 December 2011	2		
11	27-28 February 2012	2,25,45		
12	6-7 April 2012	2,25,45		
13	8-9 June 2012	2,25,45		
14	16-17 August 2012	2,10,25,47		
15	19-20 October 2012	2.5,25,47		
16	12-13 December 2012	2,25,47		
17	14-15 March 2013	2,24,46		
18	29-30 May 2013	2,15,25,46		
19	30-31 July 2013	2,15,25,47		
20	5-6 September 2013	2,10,25,49		
21	12-13 November 2013	2,15,30,48		

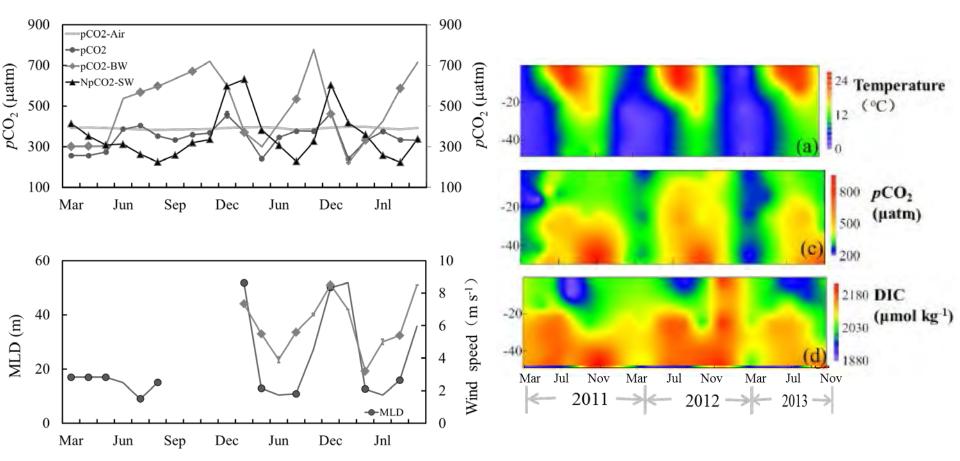
Hydrological Settings at A4HDYD station


pCO_2 at the A4HDYD station


Mean values of SST, SSS , DIC , TAlk, ΔpCO_2 , wind speed, and air-sea CO_2 fluxes at A4HDYD station in each month of an annual cycle.

Month	Surveying time	SST	SSS	DIC	TAlk	$\triangle pCO_2$	Winds	Air-sea CO ₂ flux
	Surveying time	(°C)	333	(µmol kg ⁻¹)	(µmol kg ⁻¹)	(µatm)	(m s ⁻¹)	(mmol C m ⁻² d ⁻¹)
February	2012/2/27	1.93 ± 0.05	31.61 ± 0.01	2109 ± 14	2231±12	-24±7	7.8 ± 1.0	-3.2 ± 0.8
March	2011/3/29	2.32±1.16	31.42±0.02	2070 ± 10	2257±27	-147±15	6.7±0.8	-14.8±5.3
	2013/3/14							
April	2011/4/28	5.30±2.31	31.49±0.08	2053±6	2257±14	-147±13	5.1±0.1	-8.1±0.6
	2012/4/6		51.15 - 0.00	2000 - 0	2237 - 14	147 - 15	5.1 - 0.1	0.1 - 0.0
May	2011/5/15	12.20±0.64	31.39±0.48	2030±14	2269 ± 50	-94±36	3.7±0.4	-2.7±1.5
Interv	2013/5/29	12.20 - 0.04	51.55 ± 0.40	2030 - 14	2203 - 30	54-50	J.7 <u>-</u> 0.4	2.7 - 1.5
June	2011/6/22	18.48±1.52	31.06±0.60	2020±28	2225±3	-24 ± 30	4.3±1.3	-1.3±1.7
Julie	2012/6/8	18.48 ± 1.52	31.00 - 0.00	2020 - 28	2225 - 5	-24 <u>-</u> 50	4.5 <u>-</u> 1.5	-1.5 ± 1.7
t. b.	2011/7/28	24.14 ± 0.96	30.89±0.73	1948 ± 19	2207±30	3±24	4.5±0.6	0.0+0.9
July	2013/7/31	24.14±0.86	30.89±0.73	1940 _ 19	2207 <u>-</u> 30	5 <u>-</u> 24	4.5 <u>-</u> 0.0	
August	2011/8/26		20.22 ± 0.02	1000 + 28	2180±24	-29±17	4.8±1.6	
August	2012/8/16	25.93±0.86	30.33±0.02	1909±28	2180±24	-29±17	4.8±1.6	-0.6±0.3
Septembe	2011/9/26	22.20 2.50				50 / 4		
r	2013/9/5	22.30±2.50	31.04±0.00	1965 ± 13	2226±4	-52±1	6.0±1.1	-3.8±1.3
	2011/10/23						c .	42422
October	$\begin{array}{c} 17.65 \pm 0.45 \\ 2012/10/19 \end{array} \begin{array}{c} 17.65 \pm 0.45 \\ 31.21 \pm 0.21 \\ 2010 \pm 5 \end{array} \begin{array}{c} 2010 \pm 5 \\ 223 \end{array}$	2235±0	-18±11	-18 ± 11 6.1 ± 1.1 -1.3 ± 1.1	-1.3±0.3			
	2011/11/3							
November	2013/11/12	15.45±1.82	31.04±0.06	2032±1	2240±6	-40±29	7.8±0.6	-5.2±4.5
	2011/12/19				2222 / 74			
December	2012/12/12	8.30±0.11	31.43±0.28 ○ 80 +	2153±64 - 0.62mol (2298 ± 71	68±4	7.8±0.0	8.8 ± 0.5
-0.89 \pm 0.62mol C m ⁻² yr ⁻¹ Xu et al, in prepare								

Effect of temperature on monthly variation of pCO_2



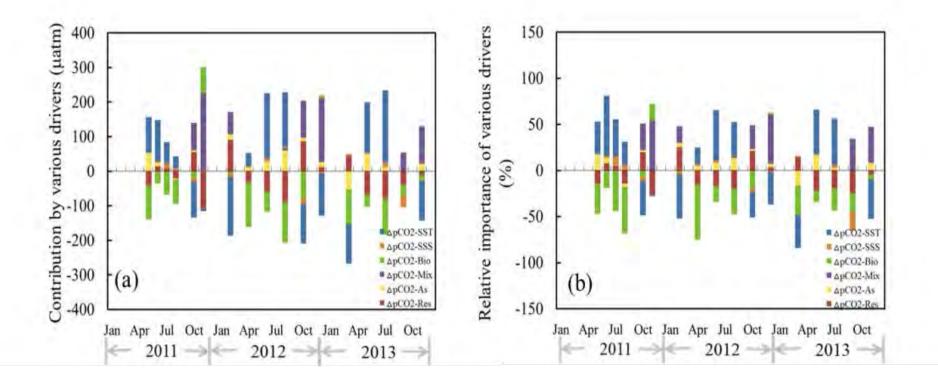
Biological effect on surface pCO_2

Xu et al, in prepare

Vertical mixing

Time series at the A4HDYD station: sea surface pCO_2 , bottom-water pCO_2 (pCO_{2BW}), N pCO_2 , atmospheric pCO_2 ($pCO_{2(air)}$), wind speed and the mixed layer depth.

Xu et al, in prepare


Processes influencing surface pCO_2

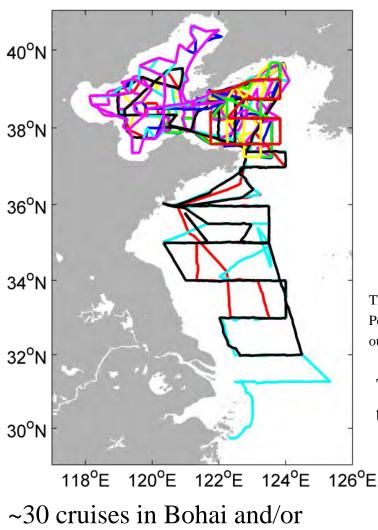
The variation of pCO_2 was a combined result of various processes: changes in temperature ($d_{SST}pCO_2$), salinity variation ($d_{SSS}pCO_2$), biological activity ($d_{Bio}pCO_2$) (an increase of CO₂ by respiration and a decrease during phytoplankton production), the CO₂ increase induced by vertical mixing of CO₂-rich waters from below ($d_{Mix}pCO_2$), air–sea CO₂ exchange ($d_{As}pCO_2$), and a residual term ($d_{Res}pCO_2$) required to close the budget.

$$dpCO_{2} = d_{SST} pCO_{2} + d_{SSS} pCO_{2} + d_{Bio} pCO_{2} + d_{Mix} pCO_{2} + d_{As} pCO_{2} + d_{Res} pCO_{2}$$
$$d_{SST} pCO_{2,i} = pCO_{2,i} \times \exp^{0.0423(T_{i+1}-T_{i})} - pCO_{2,i}$$

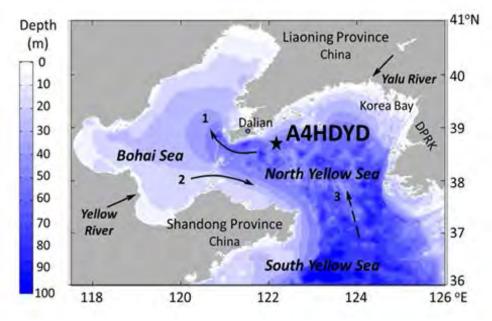
 $d_{SSS} pCO_{2,i} = p(DIC_i, TAlk_i, SSS_i, SST_i) - p\left(DIC_i \times \frac{SSS_{i+1}}{SSS_i}, TAlk_i \times \frac{SSS_{i+1}}{SSS_i}, SSS_{i+1}, SST_i\right)$ $d_{Bio} pCO_{2,i} = p(DIC_i + d_{Bio} DIC_i, TAlk_i + d_{Bio} TAlk_i, SSS_i, SST_i) - p(DIC_i, TAlk_i, SSS_i, SST_i)(d_{Mix} pCO_{2,i}) = p(DIC_i + d_{Mix} DIC_i, TAlk_i + d_{Mix} TAlk_i, SSS_i, SST_i) - p(DIC_i, TAlk_i, SSS_i, SST_i)$ $d_{AS} pCO_{2,i} = p(DIC_i + d_{AS} DIC_i, TAlk_i, SSS_i, SST_i) - p(DIC_i, TAlk_i, SSS_i, SST_i)$

Processes influencing surface pCO_2

Contribution (a) and relative importance (b). (a) and (b) of various processes (temperature, salinity biological effect, vertical mixing, air–sea exchange, and a residual term) to the pCO_2 at the A4HDYD station.

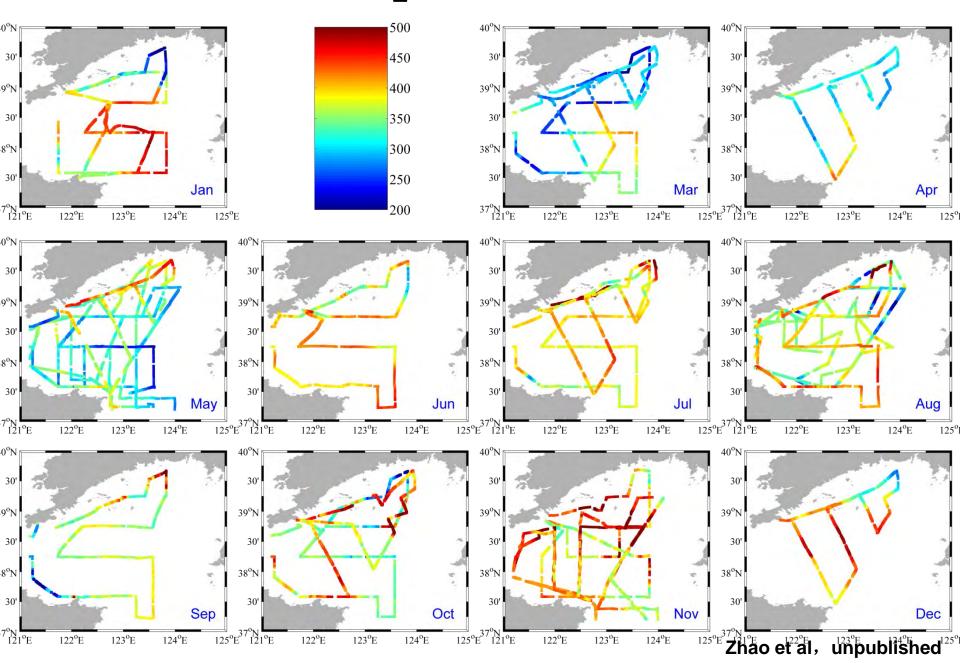

Xu et al, in prepare

Relative contribution of various processes

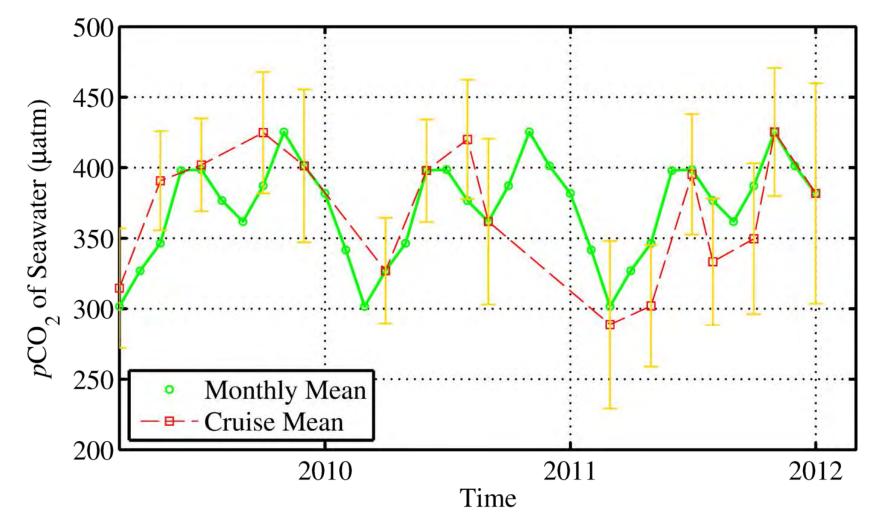

Surveyed period	SST	SSS	Biologica	Vertical	Air-sea CO ₂	Residual	Dominant
			l effect	mixing	exchange	term	processes
Feb to Apr 2012	18%	2%	-60%	0%	5%	-15%	Bio
Mar to May 2011	35%	-1%	-32%	0%	18%	-14%	SST+Bio
Mar to May 2013	48%	1%	-12%	0%	17%	-22%	SST
Apr to Jun 2012	55%	3%	-17%	0%	8%	-17%	SST
May to Jun 2011	65%	2%	-19%	0%	6%	8%	SST
May to Jul 2013	50%	3%	-25%	0%	3%	-19%	SST
Jun to Jul 2011	40%	9%	-44%	0%	0%	7%	SST+Bio
Jun to Aug 2012	36%	1%	-28%	2%	14%	-19%	SST+Bio
Jul to Aug 2011	25%	6%	-51%	0%	-3%	-15%	SST+Bio
Jul to Sep 2013	1%	-21%	-20%	33%	0%	-25%	Mix+SST+Bio
Aug to Oct 2011	-38%	-4%	-7%	29%	2%	20%	SST+Mix
Aug to Oct 2012	-28%	-4%	-19%	26%	2%	21%	SST+Bio
Sep to Nov 2013	-43%	0%	-5%	39%	8%	-5%	SST+Mix
Oct to Nov 2011	-2%	0%	18%	54%	0%	-26%	Mix
Oct to Dec 2012	-35%	-2%	2%	53%	4%	4%	SST+Mix
Nov 2011 to Feb 2012	-48%	-3%	-2%	18%	5%	24%	SST
Dec 2012 to Mar 2013	-36%	2%	-32%	0%	-16%	14%	SST+Bio

Underway pCO_2 in the NYS

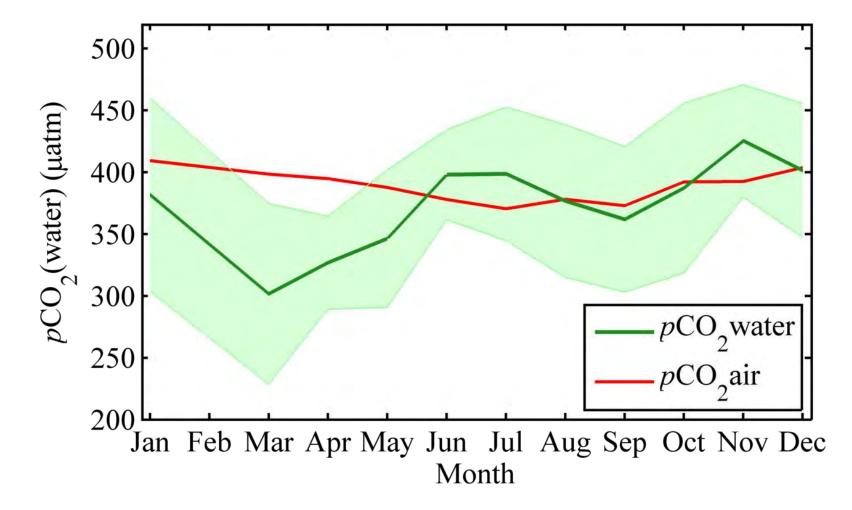
Monthly *p*CO₂ at A4HDYD station

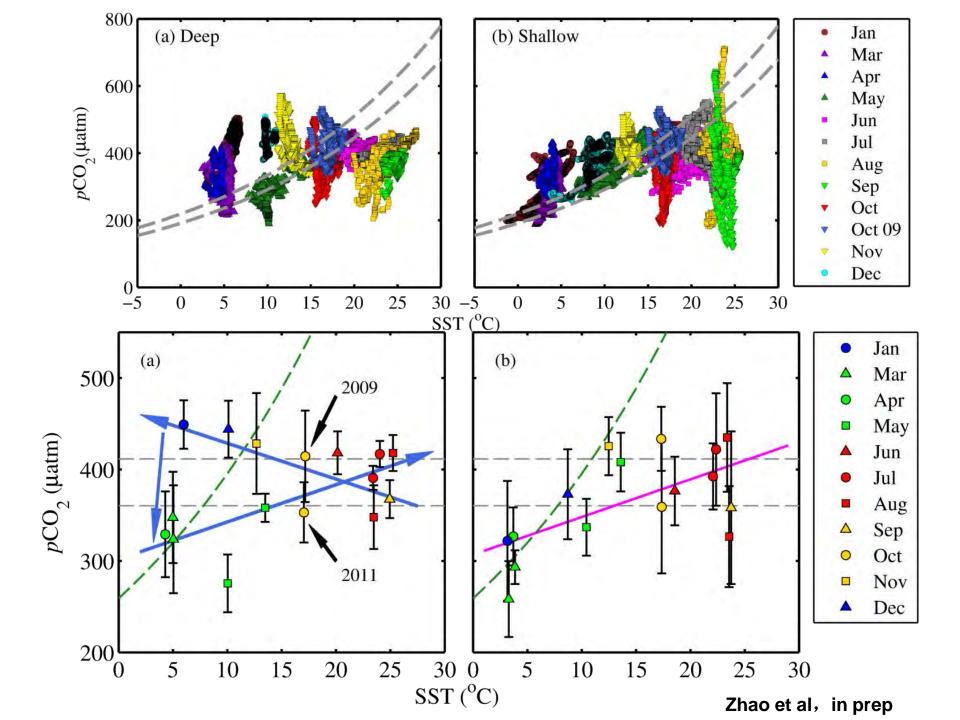

Yellow Sea from 2009 to 2015

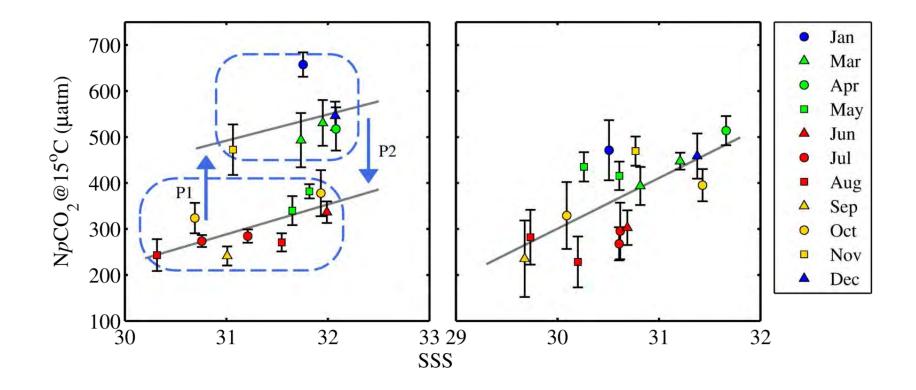
The study area. The black star denotes the A4HDYD station, while DPRK denotes the Democratic People's Republic of Korea. Black arrows denote the Bohai Sea inflow current (1), the Bohai Sea outflow current (2), and the YS Warm Current (3), which were modified from *Chen* (2009).


The A4HDYD station was surveyed 21 times on board R/V YiXing from March 2011 to November 2013 covering all the seasons

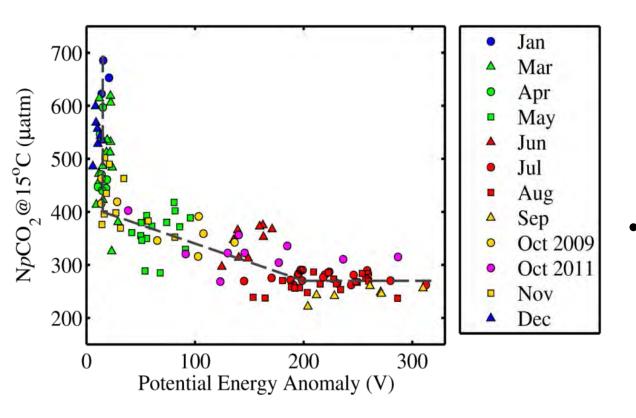
Underway pCO₂ of seawater in the NYS


Average of pCO₂ in every Cruise

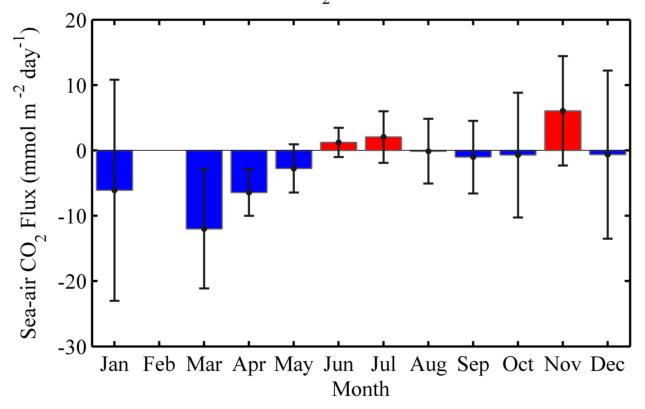

Zhao et al, unpublished


Monthly Average of pCO₂

Zhao et al, in prep



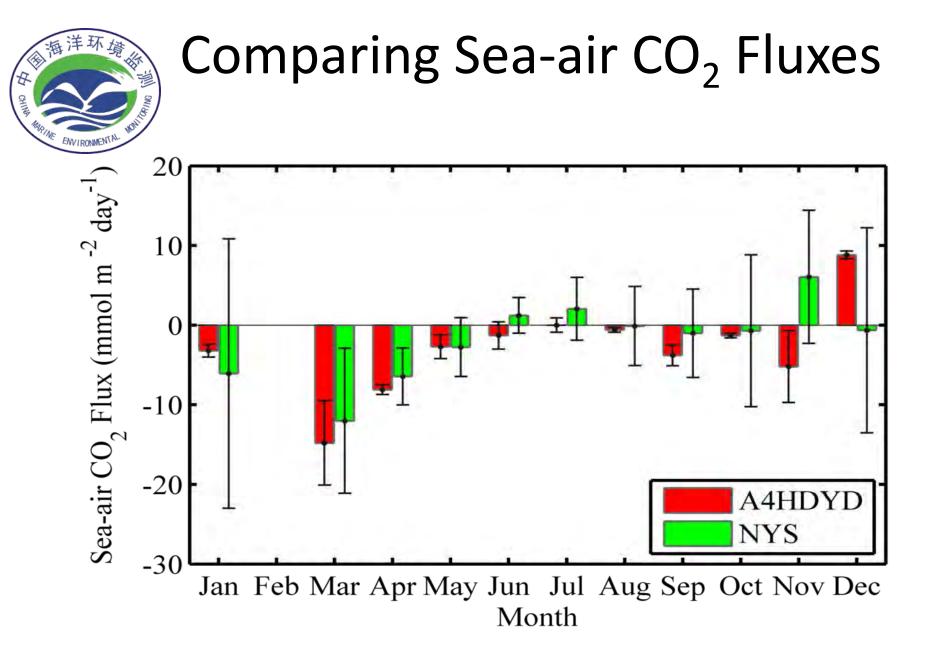
Zhao et al, in prep



- Potential Energy Anomaly was used to indicate the degree of stratification in water column
 - NpCO₂ was
 negatively
 correlated with
 stratification in the
 transition seasons

Sea-air CO₂ Fluxes

Sea-air CO₂ Flux in NYS Zone

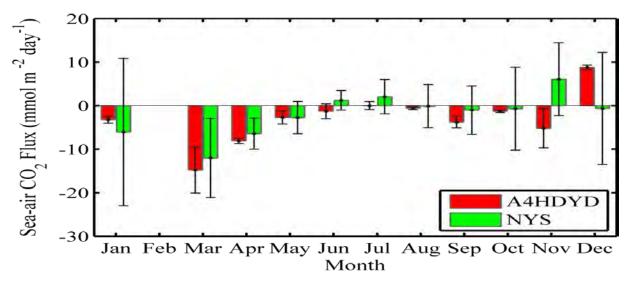


Zhao et al, in prep

Comparing Sea-air CO₂ Fluxes

	Un	derway	A4HDYD station	
Month	pCO₂water (µatm)	Flux_WK92 (mmol C/m ² /day)	Air-sea CO ₂ flux (mmol C m ⁻² d ⁻¹)	
Jan	381.7	-6.08		
Feb			-3.2 ± 0.8	
Mar	301.6	-12.01	-14.8 ± 5.3	
Apr	326.9	-6.44	-8.1 ± 0.6	
May	346.3	-2.76	-2.7 ± 1.5	
Jun	397.9	1.23	-1.3±1.7	
Jul	398.6	2.06	0.0 ± 0.9	
Aug	376.7	-0.11	-0.6 ± 0.3	
Sep	361.8	-1.02	-3.8 ± 1.3	
Oct	387.2	-0.70	-1.3 ± 0.3	
Nov	425.3	6.07	-5.2±4.5	
Dec	401.3	-0.64	8.8±0.5	
Total	-0.88 ± 0.84	4 mol C m ⁻² yr ⁻¹	-0.89 \pm 0.62mol C m ⁻² yr ⁻¹	

Summary(1)


It was obviously that our findings were different from Xue et al. (2012) with the conclusion that the study area acted as a net CO₂ source with respect to the atmosphere in spring. The biogeochemistry and ecosystems of the continental margins is complicate, leading to the monthly and annual variation of the seawater pCO₂.

	Summer $(n=67)^a$	Fall (n=80)	Winter $(n=70)$	Spring $(n = 77)$
SST	22.30±1.73	18.73 ± 0.44	6.99 ± 1.21	9.25 ± 0.97
SSS	30.91 ± 0.53	31.16 ± 0.43	32.02 ± 0.44	31.85 ± 0.62
$\Delta p CO_2$	93 ± 41	11 ± 17	-1 ± 41	27 ± 31
QuikSCAT winds	3.91 ± 0.33	7.00 ± 0.34	6.93 ± 0.52	5.10 ± 0.49
Air-sea CO ₂ flux	3.38 ± 0.48	1.39 ± 0.38	0.24 ± 0.43	1.88 ± 0.31

^a n is the total number of CTD stations for each cruise, where SST, SSS, and sea surface pCO₂ data were collected.

Summary(2)

- It would result in uncertainties in the flux calculation just based on data collected during one "snapshot" observation to represent a whole season.
- The results may have implications in carbon flux estimation in coastal regimes with dynamic variability. An integrated frame dealing with multiple temporal/spatial scales will improve our understanding to the coastal carbon fluxes and biogeochemistry.

Thank you for your attention!