Ocean Acidification Observation Network for the Arctic and sub-Arctic Pacific Oceans

Liqi Chen

Key Lab of Global Change and Marine Atmospheric Chemistry(GCMAC), Third Institute of Oceanography(TIO), SOA, PR China E-mail: chenliqi@tio.org.cn

Outline

> Introduction

Key regions in northern Pacific and Arctic Oceans as a Bellwether in the World Oceans' Acidification

Chinese National Arctic Research Expedition(CHNARE)

Initiate the Ocean Acidification Observing Network in the northern Pacific and Arctic Oceans (nPOA-ON)

GOA-ON and **AMAP-AOA**

GOA-ON: Global Ocean Acidification and Ecosystem Response Observing Network AMAP-AOA: Arctic Monitoring Assessment Program: Arctic Ocean Acidification Assessment

Key region in the western Arctic Ocean

Rapid sea ice retreating
Fast expansion of aragonite undersaturation state in the Arctic Ocean

Sea Ice extent in resent years is dropping much more rapidly than previous years

Photo: NSIDC

Latitudinal distributions of Ωaragonite, salinity, fraction of Pacific water and TAlk/Sal ratio in the upper 350 m along 170°W

1994

Salinity 0 35 0 35 32 34 34 Depth [m] 100 Depth [m] 100 33 33 32 32 200 200 31 31 Salinity 30 300 Salinity 30 300 29 70°N 75°N 80°N 85°N 70°N 75°N 80°N 85°N 0 0 1.2 1.2 1 1 Depth [m] Depth [m] 100 100 0.8 0.8 0.6 0.6 200 200 0.4 0.4 0.2 0.2 300 f PW 300 f PW 70°N 75°N 80°N 85°N 70°N 75°N 80°N 85°N 0 υ 1.75 1.75 1:25 Depth [m] Depth [m] 100 100 1.5 1.5 1.25 1.25 200 200 1 Ω aragonite 0.75 0.75 300 300 Ω aragonite 0.5 0.5 85°N 70°N 75°N 80°N TON 75°N ROON 85°N 0 71 0 71 111 69.5 70 70 Depth [m] 100 Depth [m] 100 69 69 Ĉs 68 68 200 200 67 67 3 TAlk/Sal 66 66 300 300 TAlk/Sal 65 65 70°N 75°N 80°N 85°N 70°N 75°N 80°N 85°N

2010

Qi et al., unpublished

Key region in the northern Pacific Ocean

Corrosive and acidified Pacific water

Shoaling of the aragonite and calcite saturation horizons from south to north in the Pacific

Distribution of the depths of the undersaturated water (aragonite saturation < 1.0; pH < 7.75) on the continental shelf of western North America from Queen Charlotte Sound, Canada, to San Gregorio Baja California Sur, Mexico

On transect line 5, the corrosive water reaches all the way to the surface in the inshore waters near the coast. The black dots represent station locations.

Feely et al., Science, 2009

Aragonite saturation state for (a) (Ωarag) for 2005/06, (b) 1991/02, and (c) Ωarag difference (2005/06–1991/02) along the P16 section from Antarctica to Alaska

Feely et al., JGR, 2012

Chinese National Arctic Research Expeditions (CHINARE-Arctic)

Chinese National Arctic Research Expedition (CHINARE-Arctic)-First to Sixth

199920032008201020122014

pCO₂ in Canada Basin under ice cover

Variations of surface pCO2 between 29 Aug to 9 Sep,2008 in western Arctic Ocean

pCO₂ in Canada Basin with pack ice

Variations of surface pCO2 between 29 Aug to 9 Sep,2008 in western Arctic Ocean

pCO₂ in Canada Basin with a prolong open water

400 375 µatm 350 Over 300µatm (in 200 Russia 71 85 90 80 Latitude (°N) 170°M

Variations of surface pCO2 between 29 Aug to 9 Sep,2008 in western Arctic Ocean

pCO₂ in a marginal water

Variations of surface pCO2 between 29 Aug to 9 Sep,2008 in western Arctic

Bering water influencing area

Variations of surface pCO2 between 29 Aug to 9 Sep,2008 in western Arctic 400 375 µatm 350 pCO2(uatm) 300 250 200 150 75 65 80 Latitude ("N)

Pink dot line in air Blue line: in surface water

Major controlling mechanisms for surface pCO₂ changes in the western Arctic Ocean

A mixing Model for controlling pCO₂ in the western Arctic Ocean

Variations of surface *p*CO2 during Bering Sea waters inflow to and over in the western Arctic Ocean surface

Cai, et al., Science, 2010

Major control surface pCO_2 by Air-Sea CO_2 gas exchange

Cai et al., Science, 2010

Changes of CO₂ fluxes in ten years in regions of the western Arctic Ocean

Year	Chukchi Seas (mmol C/ m²d¹)	Canada Basin (mmol C/ m²d¹)
1999	-18.9 ± 6.8	Covere Ice
2003	-18.2 ± 7.0	-14.0 ± 2.7
2008	-16.5 ± 4.4	-10.4 ± 1.6
2010	-26.8 ± 9.2	-7.15 ± 2.8

Implication for the Ocean Acidification Observing Network in the northern Pacific and Arctic Oceans (nPOA-ON)

Key regions and cruise cover areas

Key survey area in the Arctic and northern Pacific Oceans during CHINARE-Arctic

Center Arctic Ocean

Canada Basin

Chukchi Sea

Bering Strict

North Bering Sea

Improving polar vessel's duration and underway observing capacities

M/V Xuelong 21000 GRT under renovation and able to use for next 20 years

A new Icebreaker 9,950 GRT operated by PRIC, China M/V XiangYangHong No.3-New Research Vessel 4500 GRT operated by TIO,SOA and be launched in 2016

Underway pCO2 observation system

Underway *p*CO₂ system from NOAA

Underway *p*CO2 system from China

CO2, CH4,N2O underway observation using LGR

New in-situ probes technology

pCO₂ analyzer

O₂/Ar analyzer

DIC & TA Analyzer

Diatons in the West Arctic

SHELF

Ice Free

Phaeocystis sp.

Cryptonomas sp.

Chaetoceros socialis

Ice Cover

Fragilaripsis cylindrus

Thalassiosira nordenskioeldii

Chaetoceros socialis

Ice Free

Pyramimonas sp.

Dinobryon belgica

Chaetoceros socialis

BASIN

Ice Cover

Pyramimonas sp.

Nitzschia frigida

Navicula vanhoeffni

Diatoms dominated in Ice covered area

Abundances of Diatoms and Dinoflagellates in the West Arctic

Diatoms Dinoflagellates Cryptophyceae Chrysophyceae Dictyochophyceae Prasinophyceae Prymneosiophyceae Others Flagellates

During the 2 years of intense ice melting

- Diatoms and Dinoflagellates : relative abundance is decreasing
- Increase of small flagellates

07-200

Thank You!