Estimation of the future change of anchovy recruitment in response to global warming off western coast of Kyushu, Japan

Aigo Takeshige¹, Shingo Kimura², Yoichi Miyake², Hideaki Nakata³ and Takashi Kitagawa¹

¹Atmosphere and Ocean Research Institute, The University of Tokyo
²Graduate School of Frontier Sciences/Atmosphere and Ocean Research Institute, The University of Tokyo
³Graduate School of Fisheries Science and Environmental Studies, Nagasaki University

Atmosphere and Ocean Research Institute The University of Tokyo

Anchovy stocks around Japanese waters

Sea of Japan

East China Sea 70% Tsushima Warm Current

Annual landings

Western Kyushu

Seto Inland Sea Seto Inland Sea

> Tsushima Warm Current 20%

> > **Annual landings**

Pacific

The western Kyushu

Yeosu

Tsushima Warm Current

Western Kyushu

Kuroshio

Spawning ground of **mackerel and tuna**

Anchovy as a prey for predator Role as a key species in ecosystems

Climate change and anchovy

Decadal fluctuations relating with the SST

Background

SST variation

Temperature change induced by regime shift is not enough to explain the local catch fluctuation

Background

-Offshore zone--Coastal zone-5 3 Catch $(\times 10^4 t)$ 3 2 **Transport success 0.4** Transport success (%) 0.3 6 5 0.2 4 3 0.1 0 0 2010 1960 1970 1980 1990 2000

Catch

Factors

Shift of the spawning ground Weakened Tsushima Warm Current

Shift of the spawning ground Weakened coastward current

1980

1990

2000

1960

1970

2010

Changes in the larval transport success leads decadal fluctuation in the catch

Global warming

Hydrodynamic and biological conditions

Recruitment and fishery

Estimating the effect of global warming on the larval transport and survival

Global warming scenario

- MIROC (Model for Interdisciplinary Research on Climate).
- IPCC A2 scenario

Particle tracking simulation

Hydrodynamic	model (Delft 3D-FLOW)
Resolution	: 2 km, 5σ-layers
Initial condition	: MIROC
Lateral boundary	: MIROC (west/south) : Water level (east/north)
Surface boundary	: Wind-stress, heat flux
Period	: 1950–2100, Jan. – May

The model validation was tested by our previous study (please visit poster session)

Particle release location

Based on the spawning temperature and the modeled SST in each year. Spawning temperature range April: 13.7–19.6°C, May: 15.7–20.1°C

Lowest spawning temperature

Offshore zone

Coastal zone

Transport success (%) 1,000 particles × release points Track for 30 days

Particles in the fishing ground ×100 Total released particle

Highest spawning temperature

Result : larval distribution

Why the distribution shifted northward?

Environmental change affecting the transport

Strong Tsushima Warm Current →transports particle to the Sea of Japan

Northward shift of the spawning ground →unfavorable place to reach the fishing ground

Location of the spawning ground

How will the growth and survival change after global warming?

Estimation of the growth rate and food environment

Growth rate Calculated from the SST Yasue and Takasuka (2009)

Food environment Mixing layer depth as a proxy

Higher survival rate during the transport period Less nutrient, low primary production Low food availability

Food availability limit the growth rate under a higher temperature (> 19°C, Takahashi and Watanabe 2004) Limit the growth and survival

Anchovy as a prey

Effect on other species

Effect of shift of anchovy distribution on the bluefin tuna

Juvenile bluefin tuna Modeled anchovy larvae

-Present-Overlap in the distribution of bluefin tuna and anchovy

-Global warming-Shift of the anchovy distribution and Low survival of anchovy

Possibly effect on the recruit of the predatory fish

Kitagawa et al. (2006)

Conclusion Global warming in the western Kyushu

- Physical change

Intensified Tsushima Warm Current

Northward shift of the spawning ground

Weakened water mixing

- Effect on anchovy Change the connectivity between the spawning and nursery ground Low survival due to the limited food availability

Ecosystem modeling will improve the future state of anchovy recruitment and ecosystems

Thank you for your attention