New approach for primary productivity assessment in the Bering Sea

Kirill <u>Kivva^{1,2}</u>

¹ Lomonosov Moscow State University, Moscow, Russia.

² Russian Federal Research Institute of Fisheries and Oceanography (VNIRO), Moscow, Russia.

Introduction

Introduction

- Very few studies have examined the western Bering Sea annual/seasonal primary production (Arzhanova et al. 1995, Brown et al. 2011).
- Recent relatively high resolution nutrient data exist
- Here is the possibility to get a proxy for PP

- Survey aboard Fisheries R/V "Professor Kaganovsky" (TINRO-Center), September 2012
 - ► 90 CTD stations: SBE 9 plus Sealogger
 - ► 80 sampling stations: O₂, SiO₃²⁻, PO₄³⁻, NO₂⁻, NO₃⁻, NH₄⁺

 $\Delta O_2(z_x) \equiv O_{2-sat}(z_x) - O_2(z_x)$

Assumption: dissolved oxygen decreased mostly due to organic matter mineralization

Methods

 $C_{106}H_{175}O_{42}N_{16}P + 118 O_2 \rightarrow 106 CO_2 + 16 NH_4 + HPO_4^{2-} + 48 H_2O + 14 OH^{-}$ Redfield, 1958 Richards, 1958 Anderson, 1995 C/O/Si/N/P = 106/-118/23/16/1

Assumption: nutrients decrease mostly due to organic matter mineralization.

 $N_{pre} = N_{obs} - N_{remin} \approx amount of N before active vegetation$

Assumption: nutrient mineralization occurs in accordance to Redfield-Richards stoichiometry. No advection!

Scatters of calculated NCP-N and NCP-P, NCP-P and NCP-Si, and NCP-N and NCP-Si (g C m⁻² yr⁻¹).

Diagonal solid lines denote 1:1 ratio.

Dashed lines denote linear regressions, and approximate coefficients of regression are given.

Assuming Redfield-Richards stoichiometry of organic matter production and destruction,

 \approx 20 % of new organic matter is produced under N deficit conditions while some winter P is still available.

Scatters of preformed N and P, P and Si, N and Si (μ M). Lines denote Si / N / P ratio of 23 / 16 / 1.

Assuming nutrient consumption by phytoplankton with ratio of Si / N / P = 23 / 16 / 1, one may see that primary productivity is potentially limited by nitrogen.

Ratio of NCP-N (proxy for "new" PP) and NCP-Si (proxy for "total" PP), %.

<u>Discussion</u>

 $C_{106}H_{175}O_{42}N_{16}P + 118 O_{2} \rightarrow 106 CO_{2} + 16 NH_{4} + HPO_{4}^{2-} + 48 H_{2}O + 14 OH^{-}$ C / O / Si / N / P = 106 / -118 / 23 / 16 / 1 ?

Wang et al. (2002 a) reported Δ DIC / Δ N for central and south-eastern Bering Sea to be in a range of 6.58 and 6.17, resp. (instead of Redfield's 6.62).

Wang et al. (2002 b) reported $\Delta DIC / \Delta Si / \Delta N / \Delta P \approx 101 / 36 / 18 / 1$

According to Martiny et al. (2013) may be C / N / P \approx 50-150 / 10 / 1 in the eastern Bering Sea.

Also average new production was reported to be \approx 41.1 g C m-2 yr-1 for central Bering \approx 61.7 g C m-2 yr-1 for south-eastern Bering Sea (Wong et al. 2002 a)

<u>Discussion</u>

Average currents at 40 m derived from ECO-FOCI drifter data for summer

Khen et al., 2013

Calculations of NCP may be affected by advection on the periphery of study area.

<u>Conclusions</u>

- Net community production in the Bering Sea is estimated to be in range of 50-250 g C m⁻² yr⁻¹
- New to total PP ratio was estimated to be in range of 0.2-0.8
- Generally received results correspond well with existing data and estimations
- Results may be affected by ignorance of local $C/O_2/Si/N/P$ stoichiometry, or / and advection

Thank you for attention!

<u>관심을 가져 주셔서 감사</u>