Biophysical gauntlet regulating young walleye pollock survival in the Gulf of Alaska and other study cases:

Emphasis on meso and submesoscale eddies

Carolina Parada Department of Geophysics, University of Concepcion-UDEC

Outline

Biophysical gaunlet regulating young walleye pollock survival in GOA Models at different resolutions Connectivity patterns Exploration of physical indices Summary

Expanding the conceptual model of Jack Mackerel in the South Pacific Model experiments Logbook data from Russian cruises Stationary eddies in seamount region Summary

Gaps, Challenges for the future

Biophysical gauntlet regulating young walleye pollock survival

Carolina Parada, Albert Hermann, Sarah Hinckley, Carol Ladd, Ken Coyle, Georgina Gibson, William Stockhausen

GOAIERP: Modeling component

The Gauntlet

The primary determinant of year-class strength for marine groundfishes in the GOA is early life survival.

This is regulated in space and time by climate-driven variability in a biophysical gauntlet comprising offshore and nearshore habitat quality, larval and juvenile transport, and settlement into suitable demersal habitat.

Regional Comparisons

The physical and biological mechanisms that determine annual survival of juvenile walleye pollock and forage fishes differ in the eastern and western GOA regions.

Interactions

Interactions among species (including predation and competition) are influenced by the abundance and distribution of individual species and by their habitat requirements, which vary with life stage and season. How conditions experienced along the trajectories will impact young fish growth, survival and mortality?

Are any strong connectivity pattern (spawning-nursery relationships) associated to the GOA?

What is the role of Eddies (different scale) in relation to transport and connectivity in the GOA?

Are these features realistic in the model?

Are there any connectivity between GOA and BS?

How to assess the role of predation?

Connectivity in GOA and Low resolution model

Spawning-nursery area in GOA

Retention in GOA: low resolution model

Connection to BS and potential nursery grounds

Transport and connectivity within the GOA: high resolution model

Eggs	Yolk sac larvae	Feeding larvae	Juveniles
Spawning conditions Development Buoyancy Mortality	Growth (temp) Vertical movement Mortality	Bioenergetics Turbulence effect Vertical movement	Bioenergetics Vertical movement Horizontal movement
		Starvation	Predation
		Mortality	Starvation
			Mortality

Transport and Connectivity

Comparison 2002 - 2011

EGOA

More realistic initial conditions

Climatological initial conditions from Myriam Doyle

Climatological initial conditions

Describing Eddy activity and young pollock habitat

Spatial patterns:

Groundfish abundance & diversity

Spatial patterns

Hypothesis: Breakpoint in physical and biological characteristics around 147 °W

Motivation

Pronounced differences in species composition east and west of 147 °W (Mueter & Norcross 2002)

Updated from Mueter & Norcross (2002)

Spatial patterns:

Second EOF mode of SST

Submesoscale Eddies 2002:

Submesoscale Eddies 2004:

Submesoscale Eddies 2011:

Mesoscale Eddies 2002:

Mesoscale Eddies 2004:

Mesoscale Eddies 2011:

Number of Eddies Eddies day Bathimetry: 500, >500Eddies Scale:<=100m >100mRegion: Western, EasternGyre:Cyclonic, anticyclonic

	Ne= Number of eddies					Ed=Eddies_day				
			Western		Eastern		Western		Eastern	
Bathimetry	Eddies Scale	Year	Cyclonic	Anticyclonic	Cyclonic	Anticyclonic	Cyclonic	Anticyclonic	Cyclonic	Anticyclonic
500m	0-100	2002	65	90	27	41	2735	3955	1030	1680
		2004	97	98	34	57	4980	5405	1415	2700
		2011	89	74	42	43	4645	4050	1945	2235
	>1000	2002	0	1	1	0	0	65	40	0
		2004	0	3	0	0	0	105	0	0
		2011	0	1	1	0	0	40	50	0
>500m	0-100	2002	10	13	14	18	410	575	600	790
		2004	33	20	42	46	1360	1105	2295	2395
		2011	34	30	74	55	1470	1890	3570	2915
	>100	2002	9	9	19	13	485	900	1035	1235
		2004	4	5	21	17	200	440	1280	1460
		2011	11	9	31	34	640	630	1385	2555

Eddies indices

Refine indices Food availability

Comparing with Recruitment indices

Franz PC and cluster analysis

Recruitment Indices

How to integrate predation data into the models?

Description of databases available for predation

- **AFSC Groundfish cruises**: Stomach samples, prey length, predator length, sex, frequency, years 1981, 1984-1987,1990-2007,2009,2011. Survey catch data for identified groundfish predators on focal species
- Small mesh trawl databases: Survey catch data for identified predators on focal species. Forage fish collected for length, weigh, catch, sex, stomachs, restricted to between Kodiak to Unimak region, years 1953,1954, 1957,1963,1967-2010,
- Large mesh trawl databases: Survey catch data for identified predators on focal species Total weight of fish caught, sex, length, number of fish caught, years 1988-2011
- MACE surveys:
 Catch data for identified predators on focal species from pelagic trawl catches from reference trawls during Midwater Acoustic surveys.
- Observer data:
 Commercial catch data for identified predators on focal species,
 1995 to present

Where information is available?

		FRES				
	FREDATOR	ARROWCODH	FCCD	FOP	SABEERSH	FOLLOOK
What predators?	AetianState	Х				×
	Arontath	×	×	×		×
	BgSkate	×				
	NothenRock	×				
	P.Cad	×		×		×
	P.Halibut	×			×	
	FOP	×				
	RugheyeRook	×				
	WRallock	×	×	×		
	Sebestes				×	
	Lingrad				×	×
	BeringState					×
	FF-Bole					×
What years available?	Hake					×
	SRakSde		×			
.,						

Overlap - Categorical Ratio - Consumption estimate

small mesh pollock

Overlap – Categorical ratio – Consumption estimates Large mesh pollock

Groundfish database

Walleye pollock

- Integration of data collected at different spatial scales (intensive small scale vs large scales samples)
- Unbalanced spatial sampling across the Eastern and Western GOA
- Unbalanced temporal sampling, mainly from summer
- Lack of temporal resolution to appropriately represent interannual variability in most of target species

- Low resolution model reproduces observed features of GOA in terms of spawning-nursery grounds
- High resolution model showed submesoscale oceanographic structures playing an important role on transport and connectivity within GOA. how realistic are those?
- GOA and BS seem to be connected, this requires to be explored as well as the potential implicances on stock structure concept
- The western GOA showed a significant larger amount of submesoscale eddies than eastern GOA
- Spatially, predation indices are patchy. Not enough data to reproduce temporal variability. That migth be critical in the attempts to model recrutiment variability (as well as other sources of mortality).

Expanding the conceptual model of Jack Mackerel in the South Pacific

Carolina Parada – Sebastián Vásquez – Emuanuelle Di Lorenzo – Billy Ernst

Jack Mackerel conceptual model and hypothesis

Eddies, drifters and circulation

Vásquez et al., 2013

Spatial and temporal connectivity – Recruitment indices

Vásquez et al., submitted

Jack Mackerel conceptual model

JACK MACKEREL CONCEPTUAL MODEL

Challenger break: seamount region

Spawning habitat in the Seamount region

Table 2. Compilation of jack mackerel juveniles data collected by Industrial fishing Russian fleets and Oceanographic cruises in the southeast Pacific Region associated to seamounts region.

Cruise	Dates	Region prospected	Minimum and Size of Maximum sizeaggregations of juvenile jack mackerel sampled (cm)		References
Fisheries Oceanography Research cruises organized by VNIRO and AtlantNIRO, Ex Sovietic Union.	January 1980 January 1980 January 1982 February 1985 February 1987 March 1987 May 1987 May 1987 May 1988 February 1988	40°41'20"S-111°30'W 38°40'S-109°50'W 36°40'S-106°40'W 39°42'S-125°46'W 36°17'S-116°00'W 35°07'S-105°03'W 41°45'S-111°52'W 41°12'S-112°17'W 38°57'S-112°17'W 34°59'S-108°27'W	4-6 cm 5-9 cm 6-7 cm 9.2-10.2 cm 8-13 cm 8-13 cm 16-22 cm 18-25 cm 6.5 cm 5-13 cm	Biological samples	Logbook of fishing set of research fishing boats VNIRO y AtlantNIRO(Com. pers. A. Gretchina)
Industrial boat Margiris Theodora	1 September 2008	southeast Pacific 34°15'S/ 102°04'W	12-20 cm and 33-35 cm	Commercial aggregations	Com.pers. Anikeev V.
BIC Atlantida conducted by AtlantNIRO	18 – 22 October 2009	southeast Pacific 34°-36°S/109°-112°W	12-19 cm and 34-45 mm	Commercial aggregation	Cruise report of research activities of BIC Atlantida, AtlantNIRO (Anikev et al., 2010)
Russian Industrial opportunity ships	May-June 2010	40°-44°S/98°-104°W	20-25 cm	Commercial aggregation	Com.pers. Anikeev V.

Age-length function and birthdate retrocalculation

Simulated Temporal and Spatial Retention

Mesoscale Eddies in a good Retention Year

Parada et al., submitted

Parada et al., submitted

JACK MACKEREL CONCEPTUAL MODEL OFF CHILE

- Jack mackerel oceanic spawning region is connected to nursery ground in the north of Chile (>30°S)
- Recruitment indices from IBM simulation are in good agreement with stock assessment estimates
- There are spawning/nursery regions in seamount region that might be important for the population
- The role of stationary eddies (on retention) in the seamount challenger break region
- Expand the conceptual model of Jack Mackerel in the South Pacific

- Explore whether modeled eddies and its scales are realistic (physics involved)
- Explore how productive those eddies are?
- Explore whether biophysical indices can be informative and input in single/multi species population dynamic model (increase predictability?)
- Refine further mortality sources (and data collected) to improve our ability to model population dynamic variability

- FATE
- North Pacific Research Board
- Conicyt
- Franz Mueter
- Jaison Waite
- Myriam Doyle
- Sebastian Vasquez
- Alexandre Gretchina

From lobster to the Ecosystem in the Juan Fernandez Archipelago: challenges in modelling

JER GE

Billy Ernst - Carolina Parada – Pablo Manriquez - Javier Porobic – Stewart Frusher – Beth Fulton

- Started in 1883
- Modern fishery took shape after 1914
- Has remained an artisanal activity
- Lobster fishery is the mainstay of the archipelago community
- The lobster fishery through several associated bait fishery has an impact on the pelagic, demersal and benthic communities.

Landings

- Formal regulations (SSS type fishery)
- Informal (Sea tenure system of individual discrete fishing spots)
 - We developed several surveys, interviews and field measurements to describe this system.

- Access to resources is controlled by historical rights of INDIVIDUAL DISCRETE FISHING SPOTS
- The role of the community is to endorse this system

The «log book program»

- In the past not enough data was collected
- Common problem in S-fisheries
 - Development of a cost-effective logbook program:
 - Use local manpower
 - Barefoot ecologist type of approach
 - No hyperstability of indicators
 - Known spatial coverage of participants
 - This has evolved into a cost-effective government financed monitoring program

- Lobster fishery has operated sustainably for 120 years
- New challanges are associated to increase in fishing effort and other fishing activities that might impact the ecosystem
- Given the configurations of the islands there is a need for understanding connectivity
- Effect of environment at different temporal scales (low and high frequency)

- Low resolution OFES model for the Eastern South Pacific.
- High resolution ROMs model for the Juan Fernández ridge
- Effect of mesoscale gyres and EMI on chlorophyll-a distribution around the islands
- Intrathermocline eddies fertilizing the Juan Fernández ridge.

Connectivity of Jasus frontalis Subpopulations

Overview:

- High level of genetic connectivity
 Porobić et al., 2013
- Significant migration flows among subpopulations (Biophysical Model)

Porobić et al., 2012

- Pelagic stage up to 12 months Arana, 1987
- Connectivity highly influenced by oceanographic processes.

Porobić et al., 2012

- Under the light of recent advances in understanding the physical environment and the interaction with biological systems
- Small and vulnerable ecosystem
- Interplay of different fisheries (e.g. lobster and all bait fisheries)
- Ecosystem approach to study sustainability of Juan Fernández resources
- Develop a comprehensive research program for the Juan Fernández ecosystem → Using ATLANTIS framework
Spatial Domain of Ecosystem model

- The biophysical submodel of ATLANTIS is a 3D deterministic model, conformed by a system of irregular polygons whose size is characterized by the scale of the process at each location.
- The horizontally generated polygons have a bathymetric representation associated to vertical layers, which go from 3 to 6 depending on the polygon bathymetry and species habitat definition.

Functional Groups

- Assess the impact of various management actions, with spatial considerations
 - MPA performance
 - Input and output controls
- Impact of the development of new fisheries on the lobster complex and JF ecosystem
- Assess the productivity of different JF ecosystem
- Identify research gaps associated to ecosystem modelling

- All syndicates from the islands (STIPA, SPIIAS)
- Chilean Undersecretariat of Fisheries
- SERNAPESCA
- CREO Scholarship
- And many other people that collaborated

- Explore whether modeled submesoscale eddies and its scales are realistic (physics involved)
- Explore how productive those eddies are?
- Explore whether biophysical indices match recruitment variability of target species
- Explore whether biophysical indices can be informative and input in single/multiple population dynamic model (reduce uncertainty – increase predictability)
- Refine further mortality sources (and data collected) to improve our population dynamic variability
- Disciminate the effect of environmental variables