

Establishment of a jellyfish model in the Northwestern Pacific

Xuanliang Ji, Guimei LIU, Hui Wang, Shan Gao

National Marine Environmental Forecasting Center (NMEFC) 12th October, 2013

phytoplankton

Source: nutrient, light intensity, temperature

Lost: sinking, mortality, coagulation

zooplankton

Source: grazing phy; Lost: mortality, metabolism, excretion

Nitrate

Source: river runoff, nitrification; Lost: uptake

Ammonium

Source: river runoff, detritus remineralization , zoo metabolism and excretion; Lost: uptake, nitrification

DET: Large DetritusN

Source: Coagulation; Lost: remineralization, Sinking

DET: Small DetritusN Source: Zoo and phy mortality; Lost: Coagulation, remineralization, Singking

Formulation Modification---

Considering the biological characteristic in the China Coastal Sea, we did the

modification as follows:

Kmor: Phytoplankton temperature coefficient for mortality ;

q10: Temperature dependent growth rate;

中心

Conservation of biological model

Steady of the model: needs about 1 year to reach a regular annual cycle

Sensitivity Analysis:

 $\frac{C_{x}-C_{x+\%}}{C_{x}})/(\frac{X-X_{+\%}}{X})$ S_{C,X} = (-

Freidrichs, (2001)

With $X_{+\%}$ as the value biological parameter after adding in accordance with a fixed proportion, $C_{x+\%}$ as the homologous phytoplankton concentration.

	Table sensitivity values of NPZD mode	el parameters in NWF)	/	
parameter	Explanation	Phytoplankton variation	Parameter variation	Sensitivity	
Attsw	Light attenuation due to seawater	0.0691	0.5	0.1382	
Attchl	Light attenuation due to chlorophyll	-0.0117	0.5	0.0234	
Parfrac	Fraction of shortwave radiation that is photosynthetically active	0.039	0.5	0.078	
I_thNH4	Radiation threshold for nitrification inhibition	0.0065	0.5	0.013	
D_p5NH4	Half-saturation radiation for nitrification inhibition	0.0082	0.5	0.0164	
K _{NO3}	Inverse half-saturation for phytoplankton NO_3 uptake	-0.0696	0.5	-0.1392	
K _{NH4}	Inverse half-saturation for phytoplankton NH_4 uptake	-0.0757	0.5	-0.1514	
ZooAE_N	Zooplankton Nitrogen assimilation efficiency	-0.52	0.5	-1.04	
PhyIP	Phytoplankton, NH_4 inhibition parameter	0.0071	0.5	0.0142	
PhyIS	Phytoplankton, initial slope of P-I curve	0.0376	0.5	0.0753	
ZooMR	Zooplankton mortality rate	-0.107	0.5	-0.214	
ZooER	Zooplankton specific excretion rate	-0.0734	0.5	-0.1468	
ZooBM	Zooplankton Basal metabolism	-0.6299	0.5	-1.2598	
LDeRRN	Large detritus remineralization rate N-fraction	-0.0472	0.5	-0.0944	
SDeRRN	Small detritus remineralization rate N-fraction	-0.0614	0.5	-0.1228	
CoagR	Coagulation rate: aggregation rate of SDeN + Phy ==> LDeN	-0.0612	0.5	-0.1224	
NitriR	Nitrification rate: oxidation of NH_4 to NO_3	-0.059	0.5	-0.118	
wPhy	Vertical sinking velocity for phytoplankton	-0.0712	0.5	-0.1424	
wLDet	Vertical sinking velocity for large detritus	-0.0712	0.5	-0.1424	
wSDet	Vertical sinking velocity for small detritus	-0.0757	0.5	-0.1514	
μ20	Maximum specific growth rate of zooplankton at 20°C	0.5017	0.5	1.0034	
q ₁₀	Temperature dependent growth rate	-0.1027	0.5	-0.2054	
Mor	Phytoplankton mortality rate at 0 Celsius	-0.0609	0.5	-0.1218	
K _{mor}	Phytoplankton temperature coefficient for mortality	-0.0527	0.5	-09054	

中心

Jellyfish Model

Based on ROMS-FENNEL

 $\begin{array}{l}
\frac{\partial Phy}{\partial t} = \mu Phy - gZoo - m_{p}Phy - \tau (SDet + Phy)Phy - \omega_{p}\frac{\partial Phy}{\partial z} - \underline{GraSP} \\
\frac{\partial Chl}{\partial t} = \rho_{Chl} \mu Chl - gZoo \frac{Chl}{Phy} - m_{p}Chl - \tau (SDet + Phy)Chl - \omega_{p}\frac{\partial Chl}{\partial z} - \underline{GraSP} \frac{Chl}{Phy} \\
\frac{\partial Zoo}{\partial t} = g\beta Zoo - l_{BM} Zoo - l_{E} \frac{Phy^{2}}{k_{p} + Phy^{2}} \beta Zoo - m_{z} Zoo^{2} - \underline{GraSZ}
\end{array}$

$$\frac{\partial NH \ 4}{\partial t} = -\mu_{\max} f(I)L_{NH \ 4}Phy - nNH \ 4 + l_{BM} Zoo + l_E \frac{Phy^2}{k_p + Phy^2}\beta Zoo + r_{SD}SDet + r_{LD}LDet + \underline{Excretion} + \underline{Egestion}$$

$$\frac{\partial NO 3}{\partial t} = -\mu_{\text{max}} f(I) L_{NO 3} Phy + nNH 4$$

$$\frac{\partial SDetN}{\partial t} = g(1 - \beta)Zoo + m_z Zoo^2 + m_p Phy - \tau (SDetN + Phy)SDetN - r_{SD}SDetN - \omega_s \frac{\partial SDetN}{\partial z}$$

$$\frac{\partial LDetN}{\partial t} = \tau (SDetN + Phy)^2 - r_{LD}LDetN - \omega_L \frac{\partial LDetN}{\partial z} + Mortality$$

$$\frac{\partial Jell}{\partial t} = GraSP + GraSZ - Excretion - Egestion - Mortality$$

SST (1982-2005)

Feb

Aug

ROMS-GDEM

RMSE

SSS (1982-2005)

RMSE

Along section of 137°E

Sea surface currents (1982-2005)

ROMS

SODA

Model validation

(1)The data along 32°N section and at station site 6(ST-6) is derived from the survey cruises through the Joint Global Ocean Flux Study(JGOFS) in April 1994(Qiao et al. 2005).
(2)The other station data at station site 1, 2, 3, 4, 5(ST-1, ST-2, ST-3, ST-4, ST-5) is from the survey cruises by Japan from September to October in 1993.

(a): Compare the modeled results(solid line) with observed results(open circle) in October 1993 (ST-4)

(b): Compare the modeled results(solid line) with observed results(open circle) in April 1994 (ST-5)

'E 123°E 124°E 125°E 126°E 121°^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 122°E 125°E 126°E 127^{CO} ÎN9°E 120°E 121°E 125°E 126°E 127^{CO} ÎN9°E 120°E 120°E 121°E 125°E 126°E 127^{CO} ÎN9°E 120°E 120°E 121°E 125°E 126°E 127^{CO} ÎN9°E 120°E 120°E 121°E 125°E 125°E 126°E 127^{CO} ÎN9°E 120°E 120°E

Jellyfish distribution in the East China Sea

August-September, 2006

Distributions(kg/km²) of N. nomurui in the Yellow Sea and East China Sea

Sun et al. 2012. PROGRESS IN THE JELLYFISH BLOOM RESEARCH IN THE YELLOW SEA AND EAST CHINA SEA. OCEANOLOGIA ET LIMNOLOGIA SINICA, 43 (3)²¹

Fig.3 Variation in the abundance of small jellyfish in Jiaozhou Bay (Sun et al, 2012)

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Yangzte River	Nitrate	40.7	39.2	40	42.1	40.7	42.9	40	36.4	35	37.9	39.2	42.1
	Ammonium	10	12.9	11.4	6.4	4.3	4.32	6.4	5	7.1	3.6	3.6	6.4

国家海洋环境预报

中心

• The results shows some agreement with the observation.

 There's no increasing trend of jellyfish (model setup vs. in situ data?)

 For jellyfish model, there are more work to do

Thank you!

http://www.nmefc.gov.cn