2013 PICES Annual Meeting (S8), Nanaimo, Canada, Oct.18 2013

Interannual-decadal variability in the large predatory fish assemblage in the Tsushima Warm Current region of the Japan Sea with an emphasis on the impacts of climate regime shifts

Yongjun Tian Japan Sea National Fisheries Research Institute, Fisheries Research Agency (FRA), Niigata, JAPAN

apan Sea National Fisheries Research Institute. Fisheries Research Agency

50m WT: Indicator of Tsushima Warm Current

Fish Community Structure in the Japan Sea

Large predatory fishes: Tuna, sword fish, Piscivoi yellowtail, etc. Warm water species **Cold water species** 3 assemblages assemblages **Pelagic**, migratory **Demersal**, endemic Summer-autumn (Winter-spring environment environment dependent) dependent)

Trophic Level

Catch Trend in the Japan Sea during 1964-2008 (54 species by trophic group)

Year

Ecological Indicators for TWC

The two indicators decreased during coldregime, but increased during warm-regime, indicating climate-forcing (regime shift) rather than fishing (Tian et al. 2013: ICESJMS)

TWO OBJECTIVES

1. To identify the long-term variability in the large predatory fishes in **TWC: useful ecosystem indicators?** 2. To unravel their roles as toppredators in the fish community and their responses to climate changes

Data and Method

- 1. Catch statistics:1964-2008:
 - 54 species: 91% of the total catch in TWC
 - **18** piscivores species (large predatory fishes), 23 zooplantivores (most of small pelagic fishes), 13 invertevbates
- 2. Demersal species: offshore bottom trawl data set: 1974-2008; Spatial-temporal variability in demersal fishes
- 3. PCA: applied to 18 catches to determine PCs
- 4. GAM: applied to PCs ~ environmental and biological (prey) factors

List of large predatory fishes

No.	English Name	Scientific Name	Depth	Life Span	Current
	(main species)		(m)	(years)	System
1	Bluefin tuna	Thunnus thynnus	pelagic	>10	WW
2	Albacore	Thunnus alalunga	pelagic	>16	WW
3	Yellowfin tuna	Thunnus albacares	pelagic	7-10	WW
4	Swordfishes and billfishes	Xiphiidae and Istiophoridae	pelagic	10	WW
5	Common dolphinfish	Coryphaena hippurus	pelagic	?	WW
6	Frigate mackerel	Auxis spp. (A. thazard)	pelagic		WW
7	Yellowtail	Seriola spp. (S. quinqueradiata)	pelagic	>7	WW
8	Japanese Spanish mackerel	Scomberomorus niphonius	pelagic	6	WW
9	Salmons (Chum salmon)	(Oncorhynchus keta)	pelagic	2-7	CW
10	Trouts (Pink salmon)	(Oncorhynchus gorbuscha)	pelagic	2	CW
11	Japanese seabass	Lateolabrax japonicus	pelagic		WW
12	Bastard halibut	Paralichthys olivaceus	50-150	>10	WW
13	Sharks (Spiny dogfish and	(Squalus acanthias,	pelagic	>60	14/14/
	Starspotted dogfishe)	Mustelus manazo)			VVVV
14	Pacific cod	Gadus macrocephalus	200-300	>12	CW
15	Largehead hairtail	Trichiurus japonicus	20-140	8	WW
16	Lizardfish	Synodontidae	<200	<4	WW
17	Daggertooth pike conger	Muraenesox cinereus			WW
18	Skates and rays (Golden skate)	Rajiidae (<i>Bathyraja smirnovi</i>)		-	WW

Total 18 species taxa

WW: Warm Water; CW: Cold Water

(Modified fromTian et al. 2006, PiO, 68)

Total catch of 18 large predatory fishes

Proportion of catch by species or group

Total catch of large fishes decreased during 1970s and 1980s but increased since 1990s. Among the 18 species, proportion of pelagic fishes, particularly yellowtail increased distinctly; whereas the ratio of demersal fishes such as Pacific cod decreased markedly.

Catch trend for 18 species

Demersal, cold-water fishes showed declining trend; while most of pelagic, warm-water species showed opposite trend.

The first three PCs form PCA for 18 fishes

PC1-3 accounted for 74% of total variance showing decadal variation patterns.

Step-changes detected in mid-1970s, late 1980s and late 1990s

PC1: corresponding well to winter WT;

PC2: corresponding well to summer WT

Phase trajectory between PC1 and PC2

The temporal variation forced largely on the pattern between the summer and winter water temperature: differences in winter and summer WTs make the complexity of the large fish assemblage?

This pattern was also identified in demersal fish assembalge (Tian et al., 2011)

Summary of GAMs for PC1-2

No.	b. Water temperature		Climate index		Biological index		Model fitness						
	WIN	SPR	SUM	AUT	AOI	MOI	PDO	SOI	ZS	DS	D.E.	AIC	
]	PC1												
1	+***	+	+***	+***	-	-	-	-	-	-	61.6	96.13	
2	-	-	-	-	+*	+	+*	+	-	-	22.3	127.4	
3	+***	+	+*	+*	+	+	+	+	-	-	65.9	98.8	
4	+***	-	+*	-	+	-	+^	-	-	-	59.0	100.0	
5	+***	-	+*	-	-	-	+*	-	-	-	59.0	98.0	
6	+***	-	+**	-	-	-	-	-	-	-	55.4	100.2	
7	-	-	-	-	-	-	-	-	+***	+***	72.5	83.2	
_8	+^	+	+	+^	+	+	+^	+	+**	+^	82.0	80.4	
9	+^	-	+	-	-	-	+^	-	+**	+*	79.9	77.7	Final model for PC1
10	+^	-	-	-	-	-	-	-	+***	+**	77.4	79.6	
11	+*	-	-	-	-	-	-	-	+***	-	68.2	89.6	
]	PC2												
1	+*	+	+	+	-	-	-	-	-	-	30.4	126.1	
2	-	-	-	-	+	+	+*	+*	-	-	35.3	123.1	
3	+	+	+	+**	+	+	+*	+	-	-	64.7	110.2	
4	+*	-	+	-	+	-	+*	-	-	-	48.3	118.1	
5	+**	-	+^	-	-	-	+*	-	-	-	37.7	119.2	
6	+**	-	+*	-	-	-	-	-	-	-	29.6	122.7	
7	-	-	-	-	-	-	-	-	+***	+^	77.2	74.8	
8	+*	+	+	+^	+	+	+**	+*	+***	+	89.5	58.7	
9	+*	-	-	+^	-	-	+**	+**	+***	+	88.1	56.2	Final model for PC2
10	+**	-	-	-	-	-	+**	+**	+***	-	84.7	60.4	
11	+**	-	-	-	-	-	+*	-	+***	-	81.4	67.6	

GAM: PCs ~ s(WT)+ s(Climate Index) + s(log(catch of prey) 15

GAM: PC1

It indicated the significant impacts of prey (Catch_PZ), oceanographic (winter WT) and climatic (PDO) factors.

D.E. (Deviance explained)=80%

Changes in distribution: Pacific Cod

Bottom trawl fishery data

Changes in distribution: yellowtail

Summary

- The catch of large predatory fishes (PS) increased with the late 1980s regime shift. PCA showed decadal variation pattern with step changes in mid-1970s and, late 1980s and late 1990s.
- No "fishig-down food web" was identified in the TWC.
- GAMs showed PC1 and PC2 significantly affected by win-WT and sum-WT respectively; PC2 also depended on prey abundance. These results suggested that PS are forced primarily by oceanic conditions rather than their prey: environment depending variation pattern.
- Warm (cold) water species increased (decreased) their abundances and expanded (reduced) their distributions during the warm regime, and vice versa.