Cumulative Impacts in California Current Nearshore Ecosystems

Megan Mach, Rebecca Martone, Melissa Foley, Corina Marks, Ben Halpern, Carrie Kappel, Kim Selkoe

PICES 2013 Annual Meeting, October 17, 2013, Nanaimo, BC

OCEAN TIPPING POINTS

www.oceantippingpoints.org

OUR PARTNERS

Many activities in coastal systems produce multiple stressors

2006

Impacts of Biodiversity Loss on Ocean Ecosystem Services

Boris Worm,¹* Edward B. Barbier,² Nicola Beaumont,³ J. Emmett Duffy,⁴ Carl Folke,^{5,6} Benjamin S. Halpern,⁷ Jeremy B. C. Jackson,^{8,9} Heike K. Lotze,¹ Fiorenza Micheli,¹⁰ Stephen R. Palumbi,¹⁰ Enric Sala,⁸ Kimberley A. Selkoe,⁷ John J. Stachowicz,¹¹ Reg Watson¹²

2005 Are U.S. Coral Reefs on the Slippery Slope to Slime?

AAAS

10

J. M. Pandolfi,^{1*} J. B. C. Jackson,^{3,4} N. Baron,⁵ R. H. Bradbury,⁶ H. M. Guzman,⁴ T. P. Hughes,⁷ C. V. Kappel,⁸ F. Micheli,⁸ J. C. Ogden,⁹ H. P. Possingham,² E. Sala³

DE

binety Percent of the Big Fish Are

Newswee

Are the

MERICA • THE TERMINATOR RETURNS

Ninety Percent of the Big Fish Are Gone. Scientists Are Struggling to Make Sense of the Fallout.

RECOV

A call for action: Ecosystem Based Management

"Prioritize and coordinate management of multiple activities within a specified ecosystem"

Models of Cumulative Impacts estimate the spatial distribution of multiple stressors in coastal and ocean systems and evaluate the combined relative impacts from these stressors

• Data on human activities or associated stressors (e.g., climatic stressors, fishing, pollution, invasive species)

e.g. Commercial shipping and pollution, 1994

- Data on human activities or associated stressors (e.g., climatic stressors, fishing, pollution, invasive species)
- Data on the distribution of different marine ecosystems (e.g., kelp forests, seagrass beds, seamounts, shallow soft-sediment)

- Data on human activities or associated stressors (e.g., climatic stressors, fishing, pollution, invasive species)
- Data on the distribution of different marine ecosystems (e.g., kelp forests, seagrass beds, seamounts, shallow soft-sediment)
- •Assess the **vulnerability** of each ecosystem to each stressor using expert judgment

- Data on human activities or associated stressors (e.g., climatic stressors, fishing, pollution, invasive species)
- Data on the distribution of different marine ecosystems (e.g., kelp forests, seagrass beds, seamounts, shallow soft-sediment)
- •Assess the **vulnerability** of each ecosystem to each stressor using expert judgment

Spatial scale Frequency Functional impact Resistance Recovery time

Vulnerability Weight

(Halpern et al. 2007 Conservation Biology; Teck et al 2010 Ecological Applications)

Calculating a Cumulative Impact Score

- I. Layer the individual maps of stressors and ecosystems
- 2. Apply the ecosystem vulnerability weight
- 3. Calculate a cumulative impact score for every 1 km² pixel of the ocean

Regional Scale - Mapping Human Impacts (Expert Judgment, Habitat Vulnerability)

Calculating a Cumulative Impact Score

- I. Layer the individual maps of stressors and ecosystems
- 2. Apply the ecosystem vulnerability weight
- 3. Calculate a cumulative impact score for every 1km² pixel of the ocean

4. Groundtruth scores to identify indicators of multiple stressors

Objectives of this Study

I. Determine if modeled impact scores reflect spatial differences in ecological degradation within coastal ecosystems

2. Identify indicators of cumulative impacts in specific habitat types

Methods

- To determine whether the scores accurately reflect estimates of ecosystem health we compare diversity and composition of a suite of species from 3 habitat types:
 - rocky intertidal
 - kelp forest
 - shallow soft sediment

with physical conditions and impact scores from the California current model by Halpern et al (2009) Conservation Letters

Study Region

Halpern et al 2009, Conservation Letters

Study Region

Halpern et al 2009, Conservation Letters

California Current Cumulative Impacts Model

California Current Cumulative Impacts Model

Land-based

Examples: Nutrient inputs Organic/inorganic pollution Human trampling Sediment increase/decrease Coastal engineering...

Ocean-based

Examples: Fishing (recreational/commercial by gear) Invasive species Ocean-based pollution Marine debris Aquaculture...

Climate

Examples: SST UV Ocean Acidification

Impacts modeled in Halpern et al. 2009

Table 1 Data details for anthropogenic drivers and ecosystems included in our analyses. Full descriptions, data sources (with expanded acronyms), and additional details and full references for sources are provided in the Supporting information

		Anthropogenic			
	Code	driver	Brief description	Source	Native resolution
Landbased	N	Nutrient input Fertilizer and manure input	Fertilizer use for crops and confined manure (dairy farms)	USGS	1 km²
		Atmospheric deposition of nitrogen	Wet deposition of ammonium and nitrate	NADP	Point, kriged to 1 km²
	OP IP	Organic pollution Inorganic pollution	Pesticide use on agricultural land	Halpern et al. (2008c)	1 km²
		Nonpoint source Point source	Impervious surface area (urban areas) Factories, mines, and other point sources	NGDC EPA	1 km ² Point, converted to 1 km ²
	CE	Coastal engineering	Linear extent data on consolidated and riprap structures	ESI, Google	1 km²
	DH	Human trampling	Modeled by beach attendance at each access point	MLPA, OGEO, WADOE	1 km²
	РР	Coastal power plants	Cooling water entrainment from power plants	Platts	1 km ²
	SI	Sediment increase	Global warming caused increases in sediment runoff	SRTM60plus, PRISM, Syvitski et al. (2003)	1 km ²
	SD	Sediment decrease	Sediment captured by dams	SRTM60plus, PRISM, Syvitski et al. (2003)	1 km ²
	LP	Noise/light pollution	Satellite nighttime images of light intensity	NGDC	1 km ²
	AD	Atmospheric deposition of pollutants	Wet deposition of sulfate	NADP	Point, kriged to 1 km²
	CS	Commercial shipping	Commercial shipping and ferry routes and traffic	CalTrans, WADOT, Halpern et al. (2008c)	1 km²
	15	Invasive species	Modeled as a function of ballastwater release in ports	Modified from Halpern et al. (2008c)	Modeled to 1 km ²
	Р	Ocean-based pollution	Pollution derived from commercial ships and ports	CalTrans, WADOT, Halpern et al. (2008c)	1 km ²
	MD	Marine debris (trash)	Coastline trash picked up by annual beach clean-up	CCCPEP	County level, modeled to 1 km ²
Fishing	AQ	Aquaculture	Salmon and tuna fish pens	Google	1 km²
	RF	Recreational fishing	Number of recreational charter boat and private skiff trips	CRFS, CPFV	1' microblocks
	PLB	Pelagic low bycatch	Total annual catch for all gear types in this class	CalDFG, SAUP	1/2 degree and 10' blocks
	PHB	Pelagic high bycatch	Total annual catch for all gear types in this class	CalDFG, SAUP	1/2 degree and 10' blocks
	DD	Demersal destructive	Total annual catch for all gear types in this class	CalDFG, SAUP	1/2 degree and 10' blocks
	DNLB	Demersal nondestructive low by catch	Total annual catch for all gear types in this class	CalDFG, SAUP	1/2 degree and 10' blocks
	DNHB	Demersal nondestructive high by catch	Total annual catch for all gear types in this class	CalDFG, SAUP	1/2 degree and 10' blocks
	OR	Oil rigs	Offshore oil platforms	NGDC, MLPA	1 km²
Climate	SST	SST	Recent anomalously high sea temperature	Halpern et al. (2008c)	21 km²
	UV	uv	Recent anomalously high UV irradiance	Halpern et al. (2008c)	1 degree
	OC	Ocean acidification	Modeled patterns of change to ocean acidity	Guinotte et al. (2003)	1 degree

<u>Response</u>

Rocky Intertidal

OCEAN TIPPING POINTS PISCO Indicators SANTA CRU BUREAU OF OCEAN E **Rocky Intertidal** mussels Fucus distichus surfgrass Ulva bare rock

articulated coralline algae

Endocladia muricata

encrusting coralline algae

Silvetia compressa

Photo credits: Dave Lohse, UCSC, PISCO, MARINe

<u>Response</u> <u>Variables</u>

Rocky Intertidal

<u>Response</u> Variables

Rocky Intertidal

<u>Predictor</u> Variables

PISCO InVEST

integrated valuation of environmental services and tradeoffs

<u>Response</u> <u>Variables</u>

Rocky Intertidal

<u>Predictor</u> Variables

PISCO

slope rugosity wave height limit

<u>Response</u> <u>Variables</u>

Rocky Intertidal

Kelp

<u>Predictor</u> <u>Variables</u>

Kelp Forest Indicators

understory kelp

abalone

rockfish

red algae

encrusting coralline algae

YOY rockfish

predatory snails

Photo credits: Dave Lohse, UCSC, PISCO, MARINe

<u>Response</u> <u>Variables</u>

Rocky Intertidal

Kelp

<u>Predictor</u> <u>Variables</u>

Response

PISCO InVEST

integrated valuation of environmental services and tradeoffs

Variables **Variables Rocky Intertidal** Cumulative High None Impact Score PISCO - Physical InVEST - Physical Kelp Cumulative Impact Score PISCO - Physical Diego InVEST - Physical Rocky – Central & South PISCO ()Kelp – Central density rugosity wave height Does not include Islands

Predictor

<u>Response</u> <u>Variables</u>

Rocky Intertidal

Kelp

Soft-Sediment

<u>Predictor</u> <u>Variables</u>

Indicators

Shallow Soft Sediment

integrated valuation of environmental services and tradeoffs

Photo credits: www.sciencedirect.com, USC, NOAA

<u>Response</u> <u>Variables</u>

Rocky Intertidal

Kelp

Soft-Sediment

Predictor Variables

Cumulative Impact Score PISCO - Physical InVEST - Physical

Cumulative Impact Score InVEST - Physical

Results

Are diversity measures explained by physical variables and/or cumulative impact scores?

Species Richness

VS.

Cumulative Impact Score

Physical Environmental Factors

Results

Results

Results

Results

Results

Results

Are composition of indicators explained by physical variables and/ or cumulative impact scores?

Composition of Indicators

VS.

Climate-based Impacts

Land-based Impacts

Ocean-based Impacts

Physical Environmental Factors

Results

Results

Are composition of indicators explained by physical variables and/ or cumulative impact scores?

Rocky Intertidal

Results

Results

Results

Conclusions

I. Indicators of ecosystem health are primarily related to physical variables

- I. Indicators of ecosystem health are primarily related to physical variables
- 2. Indicators also correlated with impact scores

- I. Indicators of ecosystem health are primarily related to physical variables
- 2. Indicators also correlated with impact scores
 - Model fitting suggests that power to detect these relationships is limited
 - Sample size, sampling objectives
 - Variation in impact score
 - Additivity of cumulative impacts
 - Scale mismatches

- I. Indicators of ecosystem health are primarily related to physical variables
- 2. Indicators also correlated with impact scores
 - Model fitting suggests that power to detect these relationships is limited
 - Sample size, sampling objectives
 - Variation in impact score
 - Additivity of cumulative impacts
 - Scale mismatches
 - The scale of the original data used to generate impact scores are very broad (e.g. climate, fishing)

- I. Indicators of ecosystem health are primarily related to physical variables
- 2. Indicators also correlated with impact scores
 - Model fitting suggests that power to detect these relationships is limited
 - Sample size, sampling objectives
 - Variation in impact score
 - Additivity of cumulative impacts
 - Scale mismatches
 - The scale of the original data used to generate impact scores are very broad (e.g. climate, fishing)
 - Need local scale data to estimate local impacts

Next Steps

I. Model averaging

Next Steps

- I. Model averaging
- 2. Add data at broader scales across the California Current for regional scale tests

Next Steps

- I. Model averaging
- 2. Add data at broader scales across the California Current for regional scale tests
- 3. Add data from more degraded sites

Next Steps

- I. Model averaging
- 2. Add data at broader scales across the California Current for regional scale tests
- 3. Add data from more degraded sites
- 4. Examine additional relationships between indicators and single/ multiple stressors

Next Steps

- I. Model averaging
- 2. Add data at broader scales across the California Current for regional scale tests
- 3. Add data from more degraded sites
- 4. Examine additional relationships between indicators and single/ multiple stressors

Take Home:

Cumulative Impacts Model can be used to visualize cumulative impacts and set priorities at broad scales but could be improved using local data for local scale implementation

OUR PARTNERS

