Spatiotemporal variability of air-sea CO2 exchange in the California Current

Jerome Fiechter

University of California, Santa Cruz

Co-Authors: E. Curchitser (Rutgers), C. Edwards (UCSC), F. Chai (U. Maine), N. Goebel (UCSC), F. Chavez (MBARI)

PICES Meeting, Nanaimo, 16 October 2013

Motivation

Role of EBC regions in global carbon cycle

- Carbon exchange difficult to estimate from observations alone.
- > Shelf outgassing compensated by primary production offshore.
- > Substantial zonal and meridional gradients and variability.

Downscaling from climate to regional models

- Impact of horizontal resolution on air-sea CO₂ fluxes
- Implications for estimating net regional carbon budget.

Coupled Physical-Biogeochemical Model

Ocean Circulation Model

- ➢ ROMS
- Resolution: 1/3°, 1/10°, 1/30°
- 42 vertical levels
- BC/IC: SODA, monthly
- Surface: COAMPS, daily

Biogeochemical Model

- ➢ NEMURO (3N, 2P, 3Z, 3D)
- DIC, Alkalinity, Carbonate
- ➢ OCMIP air-sea CO₂ exchange
- ➢ NEMURO BC/IC: WOA, monthly
- Carbon BC/IC: GLODAP, annual

Run duration

7 years (1999-2005)

ROMS grid and bottom topography (m)

Impact of Horizontal Resolution on Biogeochemistry

Increasing horizontal resolution decreases width of coastal upwelling and CO₂ outgassing region.

Model-Data Comparison: Surface Chlorophyll

Model-Data Comparison: surface pCO₂

Model-Data Comparison: air-sea CO₂ flux

Solutions reproduce daily pCO2 variability at all grid resolutions. Solution at 1/3° grossly overestimates width of outgassing region.

CCS Outgassing and Equilibrium Regions

Meridional variability in width of equilibrium region indicates localized enhancement of outgassing condition on the shelf.

CCS Outgassing and Coastal Topography

Localized enhancement of shelf outgassing associated with coastline topography (capes).

CCS Outgassing and Coastal Topography

Regions directly equatorward of capes exhibit higher and more variable air-sea CO₂ fluxes.

CCS Outgassing and Upwelling Intensification

Localized enhancement of shelf outgassing is associated with an intensification of upwelling favorable winds equatorward of capes.

CCS Net Carbon Budget

Resolution impact most important in southern CCS (35-40°N). Net carbon budget (600km): sink of 5.4 vs. 6.0 TgC/yr (~10%).

Summary

Role of EBC regions in global carbon cycle

- \succ CO₂ outgassing on the shelf and absorption offshore.
- Equilibrium distance decreases with latitude. (35-45N: ~125 km; 35-40N: ~300 km; 40-45N: ~50 km)
- > At 600km offshore, CCS is net CO₂ sink of 6.0 TgC/yr.
- ➢ Net sink contribution: 20% SoCCS and 80% NoCCS.

Downscaling from climate to regional models

- Zonal resolution important for source-sink transition.
- > Meridional resolution important for coastal topography.
- Enhanced localized outgassing equatorward of capes.
- \succ Net carbon exchange at 1/10° is 10% larger than at 1/30°.