Using environmental data to inform spatial stock assessment assumptions in Stock Synthesis

Oregon State University Department of Fisheries and Wildlife, Corvallis, OR 97333¹ Hatfield Marine Science Center, Newport OR 97365² National Marine Fisheries Service, Northwest Fisheries Science Center³

Current US Assessments

- Assume a large spatial scale
- E.g. West Coast stock, Canadian stock and Gulf of Alaska stock for one species
- Possible risk of overfishing or underutilizing stock sub-units

Spatially Structured Data Example

- Attempted spatial assessment model for black rockfish status in 2007 failed
 - Results sensitive to parameter changes
- North
 South
 Lack of data to distribute recruiting fish to different areas
 - Recruitment
 - Pelagic, juvenile fish move to and settle in the near shore habitat

Sampson, D. B. (2007). "The status of black rockfish off Oregon and California in 2007." <u>Pacific Fishery Management</u> <u>Council, Portland, OR</u>.

Research Goals

- What information is needed to provide reliable spatially structured stock assessment results?
- What are the consequences (if any) of not having that information?
- What are the consequences of different assumptions regarding spatial structure and environmental influences?
- Today's focus:
 - The influence of an **ENVIRONMENTAL FACTOR** driving the spatial distribution of recruitment

Monte Carlo Simulation Approach

Create an Operating Model

• Manipulate a simulated stock which is age and spatially structured

Generate Data Needed for Stock Assessments

- Based on experimental treatments and known parameters
- Replicated multiple times

Analyze the Generated Data

• Use a stock assessment program to estimate stock status and other relevant quantities

Compare

• Estimates vs. known values used in the operating model

Operating Model

- Long lived species (similar to black rockfish)
- Age and spatially structured
- 2 areas, no movement of fish after settlement
- Pooled spawning biomass
- Identical in all aspects except:
 - Fishery selectivity (Age specific fishing mortality)
 - Percentage of recruits being distributed to each of the areas
- Recruitment to areas (%Recruit) driven by a simulated environment (3 temporal patterns)

Operating Model: Environmental patterns influencing %*Recruit*

- Pooled Spawning Biomass
- Percent to Area 1
- Remainder to Area 2
- 3 Simulated scenarios
 - Constant
 - Abrupt
 - Gradual

Generate Data:

Microsoft Excel data generator

Data Needed for Stock Assessments

- Catch history
- Survey and fishery age composition
- Weight at Age data
- Survey biomass Index
- Catch per unit effort for the fishery

Monte Carlo replicates

- Include sampling variability in generated data
- Variability in annual recruitment
- Variability in environmental influence on percent recruitment

Analyze Generated Data

Stock Synthesis (SS)

- Age structured assessment tool used to estimate stock status
- Used for majority of US West Coast Groundfish Assessments

Synthesis controls

- Estimate : Initial recruitment, recruitment deviations, growth and selection parameters
- Fix : Natural mortality and Steepness parameters

Methot, R. D. and C. R. Wetzel (2013). "Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management." <u>Fisheries Research 142(0): 86-99.</u>

Analyze Generated Data

Treatments:

- Spatial Assumptions (Future work)
- Survey data

o Data provided to SS or not?

- Fix or estimate the environmental influence (link)
 - $o P_{yr} = P + exp (Env_link * Env_Factor_{yr})$
 - P = Percent Recruitment parameter
 - $o Env_link = 0$
 - $o Env_link = 1$
 - o Env_link = Estimated by SS

• Survey data

o Data provided to SS or not?

Fix or estimate the environmental influence (link)

- $o P_{yr} = P + exp(Env_link * Env_Factor_{yr})$
- P = Percent Recruitment parameter
- $o Env_link = 0$
- $o Env_link = 1$

 $\sigma Env_{link} = Estimated by SS$

Compare

Estimates and operating model values

Biological reference points

Relative Bias, overall and by-area

- Spawning Stock Biomass_{current} (SSB)
- SSB_{virgin}
- Depletion (SSB_{current}/SSB_{virgin})
 - "X" % Depletion = "X" % of Virgin SSB remaining

Estimate the strength of the environmental link

- $P_{yr} = P + exp(Env_link * Env_Factor_{yr})$
- Does bias improve?

Treatments Considered Today

- 2 areas and 2 fleets
- Constant but differential levels of exploitation
- Survey data are available

Time (Years)

Bias differs based on pattern of the environmental factor

Bias differs based on pattern of the environmental factor

Bias differs based on pattern of the environmental factor

environmental influence for specific patterns

environmental influence for specific patterns

environmental influence for specific patterns

environmental influence for specific paterns

Discussion

- Preliminary!
 - Under SOME conditions, YES, environmental data may help with the distribution of recruits and estimation of reference points
 - What are those conditions? "Abrupt" environmental change
- Explore reasons for difference in "Abrupt" vs. others
- Increased intensity of environmental influence on recruitment may provide more information for the estimation process

Future Work: Are there consequences for misinterpreting spatial structure in our estimation assumptions?

Future work & Implications

• Scenarios not shown will influence results

- Time (Years)
 A base spatial model to test assumptions for estimating recruit distribution
- Better understanding of the importance of environmental data influence on stock assessment results

Acknowledgements

- Dr. David Sampson
- Dr. Jessica Miller
- Dr. Andi Stephens
- Dr. Alix Gitelman
- Oregon State University Department of Fisheries and Wildlife
- Hatfield Marine Science Center of Oregon State University
- NOAA Living Marine Resources Cooperative Science Center

Oregon State UNIVERSITY Hatfield Marine Science Center

• Mom

Questions, Comments, Concerns

