Climate effect on spatial-temporal variation of demersal fish assemblages in the Tsushima Current region of Japan Sea

Chen-Yi Tu¹, Yongjun Tian², Chih-hao Hsieh^{1,3}

¹Institute of Oceanography, National Taiwan University, Taiwan ²Japan Sea National Fisheries Research Institute, Fisheries Research Agency, Japan ³Institute of Ecology and Evolutionary Biology, National Taiwan University, Taiwan

(submitted to Fisheries Oceanography)

Climate effects on the marine population

Climate change has significant influences on phenology, geographical distribution and abundance of marine populations (Stenseth *et al.*, 2002; Walther 2010; Doney *et al.*, 2012; Poloczanska *et al.*, 2013)

CalCOFI fish larvae Hsieh et al., 2009

From climate effect to fisheries

MacNeil et al., 2010

Why species response differently?

Life history traits

Age-at-maturation, maximum length

- Species with same age-at-maturation would fluctuate synchronously (Hsieh et al., 2005)
- Fast growing, short life-span species are more likely to shift poleward (Perry et al., 2005)

Ecological traits

Biogeography

 Southern and northern stock show contrasting responses to warming (Nye et al., 2009)

Japan Sea Ecosystem

- A semi-closed marginal sea influenced by basin-scale climatological event (Naganuma 2000; Watanabe et al., 2003)
 - Shift of plankton biomass and PDO (Chiba et al., 2005)
 - Decadal variation of fish abundance (Tian, 2008)

No systematic study on distributional change of demersal species

- Investigate the climate effects on the temporal variation of abundance and distribution of the demersal fish assemblage in Tsushima current region of Japan Sea
- How well can the differences ecological and life history traits explain the species' responses to climate variability?

Demersal fish assemblage

- Japan Sea offshore bottom trawl dataset (JSOBT)
 - Catch & effort of single trawler from 1972 to 2002

Co-present of cold and warm water species (Nishimura, 1966)

Life history traits-

A_m : age-at-maturation L_{inf}: asymptotic length

Species	Geographic affinity	Depth (m)	A _m	L _{inf}	Spawning season
Gadus macrocephalus	Cold water	200-300	4	91.3	Jan-Mar
Theragra chalcogramma	Cold water	100-500	3	56.1	Dec-Mar
Pleurogrammus azonus	Cold water	<200	2	43.5	Sep-Nov
Arctoscopus japonicus	Cold water	300-500	2	27.8	Dec-Mar
Squalus acanthias	Cold water	150-180	10	124.0	Feb-May
Glyptocephalus stelleri	Cold water	200-300	2	58.9	Jan-Apr
Hippoglossoides dubius	Cold water	150-500	5	55.8	Feb-Apr
Pleuronectes herzensteini	Cold water	30-130	2	28.2	Feb-May
Microstomus achne	Cold water	50-400 3		71.5	Feb-Apr
Pandalus eous	Cold water	200-950 4		3.5	Feb-Apr
Hippoglossoides pinetorum	Warm water	150-190	2	37.0	Jan-Mar
Eopsetta grigorjewi	Warm water	<140	2	40.8	Feb-Mar
Tanakius kitaharai	Warm water	80-150	2	28.0	Dec-Jan
Glossanodon semifasciatus	Warm water	<200	1	25.5	Jan-Sep
Paralichthys olivaceus	Warm water	<150	2	80.7	Mar-Jul
Pagrus major	Warm water	<100	3	54.4	Apr-Jul
Evynnis japonica	Warm water	30-130	2	34.0	Jul-Sep
Dentex tumifrons	Warm water	<200	2	41.5	Sep-Nov
Lepidotrigla microptera	Warm water	70-140	1	30	Feb-Jun
Trichiurus japonicus	Warm water	20-140	1	65.8	Apr-Oct

Target species of single trawler

http:///overvieweol.org/pages/206691

Pleuronectes herzensteini

http://www.weblio.jp/content/Pleuronectes+herzensteinii

http://www.montereybayaquarium.org/

http://www.honda.co.jp/fishing/picture-book/hirame/images/092.jpg

Warm water species

http://content.teldap.tw/main/dc_detail.php?dc_id=2446281

http://www.jfa.maff.go.jp/sakaiminato/kantoku/photo_fish.html

Environmental variables

Cold period: 1976/77 - 1988/89 Warm period: 1988/89 - 2002

Water temperature at 50m (wt50m)

Pacific Decadal Oscillation (Mantua 2002) North Pacific Index (Trenberth and Hurrell 1994) Arctic Oscillation (Thompson and Wallace 2000) Monsoon Index (Hanawa *et al.*, 1988)

Spatial distribution of single trawl catches and efforts

Δ	nnual mean a	Annual distribution center/ boundary		
Interannual	Regression: Annual abundance vs Environmental variables		Regression: Annual center/ boundary vs Environmental variables	
Decadal	Randomization test: Comparing abundances in the cold and warm periods		Randomization test: Comparing centroids in the cold and warm periods	
 Interannual Decadal Both-scale 			n (shift/non-shift) s. e history traits	

Distribution and abundance index

 Average of the CPUE value from all the non-zero fishing areas on the annual map

- Center: Mean and median latitude
- Boundary: Max/ Min latitude
 - Northern (max. lat) warm water species
 - Southern (min. lat) cold water species

Regression analysis with environmental variables

- Use Estimated General Least Square (Ives & Zhu, 2006) to account for serial dependency in the time-series
 - Consider 1-year and 3-year lagged environmental effect
 - When significant correlation exist between abundance and distributional index, we control the abundance for partial regression

Decadal-scale shift in distribution

Significant test by randomization T = Within period /Betw. period

(Hsieh et al., 2008)

Result

- Environmental variations
- Change in geographical distribution
- Change in abundance

Environmental variations

 Complex interaction between atmospheric forcing and local water temperature (wt5om)

	wt50m	PDO	NPI	AO
PDO	-0.367*			
NPI	0.270	-0.661*		
AO	-0.105	0.203	0.063	
MOI	-0302	0.108	-0.473*	-0.076

	Species	Geographic affinity	MeanLAT	MedLAT	Boundary	Shift in Distribution	Abundance	Shift in Abundance
	Gadus macrocephalus	Cold water			+NPI (3)	+	+AO (1)	
	Theragra chalcogramma	Cold water		-MOI		+	-AO	
	Pleurogrammus azonus	Cold water	-AO	-AO		+	-wt5om	-35.2524
	Arctoscopus japonicus	Cold water		-PDO	+NPI		-PDO	-17.7438
	Squalus acanthias	Cold water	+wt5om	+wt50m	+NPI	+	-PDO (1)	-20.5291
Distribution	Glyptocephalus stelleri	Cold water		-wt5om	+AO (3)			-4.2561
	Hippoglossoides dubius	Cold water	-PDO		+PDO (1)	+	-PDO (1)	-11.7849
	Pleuronectes herzensteini	Cold water			-wt50m (1)		-PDO	-0.9105
All cold water species	Pleuronecidae (Microstomus achne)	Cold water	-wt5om	-wt5om	wt50m (1)	+	NPI (1)	-1.6959
were in relation with	Pandalus eous	Cold water	-PDO	wt50m (3)	-MOI	+	-AO (1)	
the environmental								
variable	Hippoglossoides pinetorum	Warm water				+		
Vallable	Eopsetta grigorjewi	Warm water			+AO		PDO (1)	
	Tanakius kitaharai	Warm water					+MOI	
Over 55% of species	Glossanodon semifasciatus	Warm water	+MOI			+	+MOI (3)	
has significant shift	Paralichthys olivaceus	Warm water	-NPI (1)	-NPI (1)		+	-NPI (3)	-0.8323
from cold to warm	Pagrus major	Warm water	+NPI (1)	+wt5om	+PDO (3)		+wt50m	0.5094
	Evynnis japonica	Warm water				+	+AO (3)	1.5133
period	Dentex tumifrons	Warm water	+wt50m (1)	+NPI (1)	-wt5om	+	+MOI (1)	0.9436
	Lepidotrigla microptera	Warm water	+wt50m (1)	-NPI	-wt5om	+	+MOI (3)	
	Trichiurus japonicus	Warm water				+		-1.0378

Cold water species

Warm water species

Species	MeanLAT	MedLAT	Boundary
Hippoglossoides pinetorum			
Eopsetta grigorjewi			+AO
Tanakius kitaharai			
Glossanodon semifasciatus	+MOI		
Paralichthys olivaceus	-NPI (1)	-NPI (1)	
Pagrus major	+NPI (1)	+wt5om	+PDO (3)
Evynnis japonica			
Dentex tumifrons	+wt5om (1)	+NPI (1)	-wt5om
Lepidotrigla microptera	+wt50m (1)	-NPI	-wt5om
Trichiurus japonicus			

Effect from ecological and life history traits

	Interannual		Decadal			Both			
	AIC	b	p value	AIC	b	p value	AIC	b	p value
Affinity	17.460	-19.161	0.033	27.675	0.154	0.876	28.917	-1.099	0.245
A _m	21.190	1.061	0.287	26.943	0.29	0.438	27.459	0.658	0.152
L_{inf}	22.323	0.032	0.317	26.943	0.045	0.134	26.673	0.044	0.078

Affinity: cold/warm water A_m: age at maturation L_{inf}: asymptotic length

Physiological basis of geographical affinity

Thermal tolerance limit

 Generally narrower in Cold-water species with subarctic origin than warm-water species

(Pörtner and Peck, 2010)

	Interannual							
	AIC	b	p value					
Affinity	17.460	-19.161	0.033					
A _m	21.190	1.061	0.287					
L_{inf}	22.323	0.032	0.317					

Potential fishing impact indicated by body length

 Large species are mostly important fisheries targets

	Both						
	AIC	b	p value				
Affinity	28.917	-1.099	0.245				
A _m	27.459	0.658	0.152				
L_{inf}	26.673	0.044	0.078				

Species interaction

- Habitat quantity is important for juvenile settlement of demersal species (Gibson et al., 1994; Van der Veer 2000)
- Such interactions may play a role in mediating the response to climate change

	Distribution
Interannual	Geographical affinity
Decadal	X
Interannual + Decadal	Asymptotic length

Shift in abundance

Cold water

Species	Decadal (Warm-Cold)	Interannual
Gadus macrocephalus	-0.9943	AO (1)
Theragra chalcogramma	-1.7222	-AO
Pleurogrammus azonus	-35.2524	-wt5om (3)
Arctoscopus japonicus	-17.7438	-PDO
Squalus acanthias	-20.5291	-PDO (1)
Glyptocephalus stelleri	-4.2561	
Hippoglossoides dubius	-11.7849	-PDO (1)
Pleuronectes herzensteini	-0.9105	-PDO
Microstomus achne	-1.6959	NPI (1)
Pandalus eous	-0.4656	-AO (1)

Warm water

Species	Decadal (Warm-Cold)	Interannual
Hippoglossoides pinetorum	-2.2135	
Eopsetta grigorjewi	-0.3874	PDO (1)
Tanakius kitaharai	-0.2805	MOI
Glossanodon semifasciatus	-6.4419	MOI (3)
Paralichthys olivaceus	-0.8323	-NPI (3)
Pagrus major	0.5094	wt5om
Evynnis japonica	1.5133	AO (3)
Dentex tumifrons	0.9436	MOI (1)
Lepidotrigla microptera	-0.0886	MOI (3)
Trichiurus japonicus	-1.0378	

Some warm water species *increase* while most of cold water species *decrease* significantly

Effect from ecological and life history traits

	Interannual		Decadal			Both			
	AIC	b	p value	AIC	b	p value	AIC	b	p value
Affinity	20.287	-0.693	0.596	27.398	-1.253	0.210	28.917	-1.099	0.245
A _m	18.353	1.244	0.331	27.965	0.334	0.361	27.459	0.658	0.152
L_{inf}	20.560	-0.003	0.907	27.668	0.025	0.273	29.796	0.013	0.488

None of the variable can explain the change in abundance!

- Nonlinearity in response to environmental forcing
 - Biological population can amplify the environmental noise and tend to be highly fluctuated (Hsieh et al., 2005)
- Fishing effect
 - The exploited species can show higher temporal variability (Hsieh et al., 2006)

Conclusion

	Distribution	Abundance
Interannual	Geographical affinity	Х
Decadal	X	X
Interannual + Decadal	Asymptotic length	Х

- It would be difficult to predict species' response to climate change based on single factor
 - Need to consider the effect of species interaction and biological nonlinear amplification

Acknowledgment

 Stock Assessment and Management Group of Japan Sea National Fisheries Research Institute, FRA

