Predicting summer pelagic habitat hotspots of neon flying squid (Ommostrephes bartramil in the western North Pacific

<u>Irene D. Alabia¹, **Sei-Ichi Saitoh**¹, Hiromichi Igarashi², Yoichi Ishikawa², Norihisa Usui³, Masafumi Kamachi³, Toshiyuki Awaji⁴ & Masaki Seito⁵</u>

Graduate School of Fisheries Sciences, Hokkaido University ²JAMSTEC, ³MRI, ⁴Kyoto University & ⁵APITRC

BACKGROUND

Neon flying squid distribution

BACKGROUND

North Pacific population & migratory patterns

¹ Chen & Chiu 2003; ² Bower & Ichii,2005

OBJECTIVES

- (1) Deduce the influence importance of oceanographic proxies to squids' pelagic habitat
- (2) Characterize the spatio-temporal patterns of squids' pelagic habitat hotspots
- (3) Understand the physical mechanism that relates to squid aggregations

Study area

Datasets

Environmental variables	Abbrev	. Unit	Source	Temporal Resolution	Source Resolution
Sea surface temperature	SST	° C	AVHRR	daily	25 km
Sea surface salinity	SSS	PSU	MOVE-MRI ¹	5-day	10 km
Sea surface height	SSH	cm	AVISO	daily	25 km
Eddy kinetic energy	EKE	cm²⋅s⁻²	AVISO	daily	33 km
Mixed layer depth	MLD	m	MOVE-MRI	5-day	10 km
Squid Fishery Data	Description		Source	Temporal coverage	
Squid CPUE (tons/day)	Daily po	oint data	APITRC	May-July	2000-2004

¹MOVE: Meteorological Research Institute Ocean Variational Estimation System

Squid habitat hotspots detection

Persistence of squid habitat hotspots

² Engler et al 2004

RESULTS & DISCUSSION

Key findings: Relative importance of environmental factors to squid habitat – Objective 1

	Environmental Covariates	With the variable		Without the variable		All variables	
		AIC	CDE (%)	AIC	CDE (%)	AIC	CDE (%)
	SST	8657	0.28	8095	17.00		
	SSS	8297	9.64	8318	12.50		
	SSH	8543	5.01	8145	15.00	8067	17.8
	EKE	8472	6.61	8114	16.20		
	MLD	8487	6.20	8116	16.60		

- Primary contribution from SSS, EKE and SSH: squid association with small-scale salinity fronts & eddies
- SST with lowest contribution: homogeneous spatial pattern due to increased insolation

CDE: Cumulative Deviance Explained

RESULTS & DISCUSSION

Key findings: Spatial-temporal patterns of summer pelagic habitat hotspots – Objective 2

- Potential squid habitat: Northern transition zone & SAFZ
- Northward retreat of fishing fleets from May-July

RESULTS & DISCUSSION (2)

Key findings: Persistence of summer squid pelagic habitat hotspots across years – Objective 2

- Proximal to major frontal systems subarctic front (33.8) & TZCF (18°C)
- Squid fishery (May-June) Transition zone (36-40°N) ≈ eddies & fronts ≈ low hotspot persistence

RESULTS & DISCUSSION

Key findings: Potential physical mechanisms of squid aggregations – Objective 3

SUMMARY & CONCLUSION

- While environmental proxies exhibit differences in model contribution, their combination shaped the squid pelagic habitat in the North Pacific.
- Squid hotspots persistence is associated with the predictability & dynamics of oceanographic features.
- Squids recognize & track persistent as well as ephemeral cues from its environment for optimal foraging.

ACKNOWLEDGEMENT

RECCA promotes R&D to provide scientific knowledge obtained by the climate change projection for the regional (prefectures or cities) adaptation.

This study is supported by RECCA project, MEXT as one of 12 themes "An Innovative Method of Forecasting Ocean Circulation and Fishery-Resource Variabilities Linked to Climate Change for Operational Use" (PI: Toshiyuki Awaji, Kyoto Univ. & JAMSTEC, Co-PIs: Sei-Ichi Saitoh, Hokkaido Univ.)

Thank you for your attention