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Quantifying predation: the correlative approach

Sh
rim

p	  
bi
om

as
s	  (
Gg

)	  

Worm & Myers, Ecology, 2003



Is surplus production better?

Biomassy+1 = Biomassy + Surplus productiony − Catchy
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Questions

What can we glean from surplus production models that account
for predation?

I Quantify top-down predation effects

I Estimates of management reference points

Approach

I Operating model used to simulate data

I Statistical model fit to simulated data

I Results and conclusions
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Simulated data
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Four different prey life histories

Pacific sardine

I Age at 50% maturity: 1.2

I Adult natural mortality: 0.4

Atlantic menhaden

I Age at 50% maturity: 2.5

I Adult natural mortality: 0.47

Silver hake

I Age at 50% maturity: 1.6

I Adult natural mortality: 0.15

English sole

I Age at 50% maturity: 3.5

I Adult natural mortality: 0.26



Deterministic dynamics
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Stochastic dynamics
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Top-down effects
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Top-down effects
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Top-down effects

Adults
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What if we add a second predator?



Multiple predators further degrades signal
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Conclusions

What can we glean from surplus production models that account
for predation?

I Quantify top-down predation effects:

I Easily masked by variability

I Depends on life history

I Estimates of management reference points:

I Predation can improve estimates

I Surplus production models unreliable
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Thanks!

I Trevor Branch, Jason Link, Andre Punt

I Essington lab


