#### Coupled land-ocean model for the coastal fisheries in a Region of Freshwater Influence (ROFI): A case study in Funka Bay

#### Satoshi <u>Nakada</u><sup>1</sup>, Yoichi Ishikawa<sup>1</sup>, Toshiyuki Awaji<sup>1</sup> and Sei-ichi Saitoh<sup>2</sup>

<sup>1</sup>Department of Geophysics, Kyoto University <sup>2</sup>Faculty of Fisheries Sciences, Hokkaido University Funka Bay (FB) is one of Regions Of Freshwater Influence: ROFIs (Simpson, 1997)



Funka Bay (FB) is one of Regions Of Freshwater Influence: ROFIs (Simpson, 1997)



- So far, the bay circulations influence by "huge" rivers have been studied from many viewpoint of physical and fishery oceanography.

- → e.g., Chesapeake Bay with Potomac and Susquehanna River Bohai with Yellow, Hai, Liao, and Luan Rivers
- $\rightarrow$  There are high-performance river & ocean model with sufficient data.
- Many bays have many small rivers influencing water circulation,
- ecosystem, and fishery yields, however, these have been still unclear.

Funka Bay (FB) is one of Regions Of Freshwater Influence: ROFIs (Simpson, 1997)



 So far, the bay circulations influence by "huge" rivers have been stuc
 from many viewpoint of physical and fishery oceanography.
 → e.g., Chesapeake Bay with Potomac and Susquehanna River Bohai with Yellow, Hai, Liao, and Luan Rivers
 → There are high-performance river & ocean model with sufficient dat
 Many bays have many small rivers influencing water circulation, ecosystem, and fishery yields, however, these have been still unclear.

AUG

SeaWiFS Chl-a (mg m-3)

## Small rivers flowing into FB (ROFI)



# Small rivers flowing into FB (ROFI)

Nutrient-rich Oyashio water inflow was strong in 2008 but weak in 2009

We focus on north-south contrast of kelp production rate possibly resulted from Riverine Nutrients Input and Water Circulation in the bay
However, contributions of riverine nutrients input to kelp production are unclear.
To clarify this, primarily our project needs information of Kelp production rate (2009/2008)
1) Volume transport from small rivers
2) Riverine nutrients (NH4, NO3-, NO2-, PO43-, SiO2) associated with runoffs
3) Realistic water circulation in the bay

礼文華川

Specialized runoff prediction for real-time and short-term now/forecast of ocean state is essential for near-future coastal fishery.

→ How estimate runoff volume and nutrients with a few or no observed data?
 → Impact to ROFI?

流量観測所 遊楽部川上流

## **Objectives**

- 1) We propose procedures to estimate runoffs from small watersheds using meteorological data archiving low computational cost.
- 2) An application of locally coupled land-sea model are shown using the runoff model and OGCM around the FB.
- 3) By using the coupled model, we estimate nutrients loaded from river or land and understand relationship among nutrient inputs, kelp production, and water circulation by a numerical approach.

## Numerical procedures

## DATA used for river model

| category |           | Abb | variables            | data name     | sources                             | mesh size   | Interporation                        | mesh<br>size         |
|----------|-----------|-----|----------------------|---------------|-------------------------------------|-------------|--------------------------------------|----------------------|
| Input    | weather   | Та  | Air<br>Temperature   |               | Japan<br>Meteor.<br>Agency<br>(JMA) |             | → Spline →                           | 500<br>x<br>500<br>m |
|          |           | Wu  | Wind Speed           |               |                                     |             |                                      |                      |
|          |           | rh  | relative<br>humidity | GPV/MSM       |                                     | 0.125x0.1°  |                                      |                      |
|          |           | CI  | Cloudness            |               |                                     | (11x11 km)  |                                      |                      |
|          |           | Ρ   | Precipitation        |               |                                     |             |                                      |                      |
|          | topograhy | Hd  | Land Elevation       | DM50m<br>Grid | GSI                                 | 50x50m      |                                      |                      |
|          |           | Hb  | Bathymetry           | JEGG500       | JODC                                | 500x500m    |                                      |                      |
|          |           | He  | Topography           | ETOPO1        | NOAA                                | 1x1 °       | $\rightarrow$ Gaussian $\rightarrow$ |                      |
|          |           | Hg  | Land Elevation       | GTOPO30       | USGS                                | 0.5x0.5°    |                                      |                      |
|          | river     | Rp  | River passage        | W05-09_01     | GSI                                 | vector data |                                      |                      |

| Validation | river<br>efflux | Q | River discharge | Runoff<br>Table | Hokkaido<br>Pref. |
|------------|-----------------|---|-----------------|-----------------|-------------------|
|            | weather         | S | snow cover      | AMeDAS          | JMA               |

#### Watersheds around Funka Bay (FB)



### Flowchart of Estimation of Runoff



### Flowchart of Estimation of Runoff



#### Schematics of Radiation, Heat, and Water Budget



#### Schematics of Radiation, Heat, and Water Budget

Radiation Budget

- Water budget

Heat Budget

$$\mathbf{R} = \mathbf{P} - \mathbf{E} + \mathbf{M}$$

- Modified Penman-Monteith (ASCE-EWRI, 2005)

$$E = K_f ET_o = K_f \frac{0.408 \Delta (R_n - G) + \gamma C_n u_2 (e_s - e_a) / (T + 273)}{\Delta + \gamma (1 + C_d u_2)}$$

- Radiation  $Rn = (1 - f)S \downarrow + L_a \downarrow + L_g \uparrow$  Albedo:  $f = 0.02T + 0.554 (0.4 \le f \le 0.9)$ 

Radiation Budget

 $S\downarrow$ : solar insolation

- Snowmelt

ank-Mode

2nd Tank

3rd Tank

Snowpack

Tank-Model 1st Tank 2nd Tank

Tank

$$\begin{split} Ml_F^{-1} &= R_n - H_g - lE_g + Q_R + Q_B - Q_S \\ H_g &= c_p \rho C_H U(T_s - T) \\ lE &= l \rho C_E U[q_{SAT}(T_s) - q] \cong l \rho C_E U[(1 - rh)q_{SAT}(T) + \Delta \cdot (T_s - T)] \\ Q_B &= -3.86, \\ Q_R &= 1.162PT_a, \\ Q_S &= 0. \end{split}^{u_2 \text{ [m s^1]: mean daily or hourly wind speed at 2-m height (m s^1)} \\ e_s \text{ [kPa]: the saturation vapor pressure at air temperature} \\ e_a \text{ [kPa]: the saturation vapor pressure of the air.} \\ \Delta \text{ [kPaC^1]: the slope of the saturation vapor pressure versus temperature curve } \\ \gamma \text{ [kPaC^1]: the pyschrometric constant} \end{split}$$

# Configuration of Tank (River Runoff) Model & "F" value method



#### Kyoto OGCM Data Assimilation & Downscaling System



#### Kyoto OGCM Data Assimilation & Downscaling System



• The OGCM & river model are locally coupled around FB (red square)

## Results

## OGCM Result

Nutrient-rich Oyashio water (purple area) inflow into FB was clearly observed in 2008, in contrast the inflow in 2009 was not dominant, which led to the severe decrease of kelp production in 2009.

The our numerical results well reproduced the contrast between 2008 and 2009.



2011-02-14-21:16

#### Runoff & Snow cover reproduced by river model

Model exhibits good performance (Estimated Error < 3%, Cor. = 0.63-0.87) Large amount of runoff generated by snowmelt into the bay in spring (blue hatch)



#### Runoff & Snow cover reproduced by river model

Model exhibits good performance (Estimated Error < 3%, Cor. = 0.63-0.87) Large amount of runoff generated by snowmelt into the bay in spring (blue hatch)



# Summer-time clockwise circulation induced by buoyancy flux of runoff generated by snowmelt



# Summer-time clockwise circulation induced by buoyancy flux of runoff generated by snowmelt



## Riverine nutrient fluxes into FB



Riverine nutrient fluxes in 2009 was 1.3 times in 2008

## **Speculation & Summary**

# Speculation

Observed evidence of clockwise circulation

circulation transporting nutrients toward northern coast. - These advected high nutrients suppress decrease of kelp production around northern coast in weak Oyashio year. 97.5 66.7 田町) 室蘭市 ポンフルイニ Kelp production rate (2009/2008) 重田

- Snowmelt generates large runoffs and nutrients fluxes into FB.

- The riverine buoyant flux of runoff induces the clockwise



### Summary

- We proposed the small river model to estimate runoff and nutrient fluxes from small rivers based on heat and water budget and tank model.
- The coupled OGCM & river model well improved the salinity and velocity field.
- Large runoffs associated with snowmelt induced the clockwise circulation and riverine nutrient fluxes into FB.
- Heavy snow at mountain in 2009 → much runoff with large snowmelt → intensified clockwise circulation → transport nutrients to northern coast → keep kelp production



## Submarine Groundwater Discharge (SGD)



Fresh Groundwater No dissalved O<sub>1</sub> High dissolved Fe High dissolved Fe

Ground water Flow

Mixing Zone

Dissolved Ferr Fe Oxides Fe Oxides "scaverge" Phosphase

Safine Portwater High distolved O, Low dissolved Fe Locur Phosphete

## Submarine Groundwater Discharge (SGD)



Mar AprMay Jun Jul AugSepOct NovDec Jan FebMar AprMay Jun Jul AugSepOct NovDec Jan FebMar AprMay Jun Jul AugSepOct NovDec Jan FebMar AprMay Jun Jul AugSepOct NovDec

Todal SGD = 13.4 m<sup>3</sup>/s, 10-50% of River Runoff