Ecological consequences of a precipitous decline in mean trophic level in the Northern California Current

Nick Tolimieri, Jameal Samhouri, Blake Feist, Phil Levin

NOAA Fisheries, Northwest Fisheries Science Center

Ecosystem reorganization means retooling to better benefit from the ocean's bounty

ABUNDANT WILDLIFE

CLEAN BEACHES

RENEWABLE ENERGY RESOURCES

RELIABLE FISHERIES

How does reorganization happen?

Bottom-up & climatic drivers

How does reorganization happen?

Top-down drivers

Mean trophic level as an indicator of reorganization

Mean trophic level as an indicator of reorganization

Ecosystem reorganization in the California Current?

1) What's happening to trophic structure?

2) What are the ecological consequences?

Focus: the groundfish community

NOAA Northwest Fisheries Science Ctr West Coast Trawl Survey

- ***** 2003-2010

- → >4,000 trawls

TL info from fishbase.org

Previously stable trophic structure

Previously stable trophic structure has declined rapidly

Have higher trophic level species been lost?

Have lower trophic level species become more abundant?

Higher TL groundfish biomass declined by 43% since 2003

Lower TL groundfish make up a greater proportion of total biomass

Ecosystem reorganization from the top down in the California Current?

- 1) What's happening to trophic structure?
 - Higher TL groundfish declined

2) What are the ecological consequences of top predator decline?

Modeling potential ecosystem responses

CA Current ecosystem model Ecopath with Ecosim Field et al. 2006

Modeling potential ecosystem responses

CA Current ecosystem model Ecopath with Ecosim Field et al. 2006

- Introduced a 40% decline in higher TL groundfish biomass
- Tested instantaneous and dynamic ecosystem responses
 - Structural
 - Functional (trophic and bioenergetic processes)

Structural changes

(Instantaneous)

Structural changes

Initially, prey species responded positively

Instantaneous

++++

++++

++++

++++

++++

+++

++++

++++

+++

++

Species group

phytoplankton

small zooplankton carnivorous zooplankton

amphipods

krill

jellies

pandalid shrimp

crabs

squid forage fish

salmon

lower TL groundfish

albacore

seabirds

harbor seals

whales

Change over 10 years

nr: <10%

+: 10-20%

++: 20-50%

+++: 50-100%

++++: >100%

Functional changes

Trophic processes changed, bioenergetics did not

	Instantaneous	
<u>Trophic</u>		
herbivores	++++	Change over 10 years
zooplanktivores	++++	nr: <10%
macroinvertivores	++++	+: 10-20%
scavengers	++++	++: 20-50%
Bioenergetic		+++: 50-100%
biomass		++++: >100%
consumption	nr	
respiration	nr	
throughput	nr	
production	nr	
NPP NPP	nr	

How might predator-prey interactions play out over time?

Ecological consequences of top predator decline: initial prey release

Ecological consequences of top predator decline: initial prey release...with a twist

Competitive release tempered prey release over time

Structural changes

Dynamic predator-prey interactions modified structural responses to top predator decline

Structural changes

Dynamic predator-prey interactions modified structural responses to top predator decline

		Instantaneous	Dynamic
Species gr	<u>oup</u>		
	phytoplankton		nr
small zooplankton			nr
carnivo	rous zooplankton	++++	nr
	amphipods	++++	nr
Change over 10 years	krill	++++	nr
nr: <10%	jellies	++++	nr
+: 10-20%	pandalid shrimp	++++	+
++: 20-50%	crabs	+++	+
+++: 50-100%	squid	++++	+
++++: >100%	forage fish	++++	nr
11111210070	salmon	+++	++
lov	ver TL groundfish	++	+
	albacore		+
	seabirds		+
	harbor seals		nr
	whales		nr

Functional changes

Tempered trophic responses, no changes to bioenergetic processes

	Instantaneous	Dynamic
Trophic		
herbivores	++++	nr
zooplanktivores	++++	nr
macroinvertivores	++++	+
piscivores		+
scavengers	++++	nr
Bioenergetic		
biomass		nr
consumption	nr	nr
respiration	nr	nr
throughput	nr	nr
production	nr	nr
NPP	nr	nr

Ecosystem reorganization in the California Current

- 1) What's happening to trophic structure?
 - Higher TL groundfish declined

- 2) What are the ecological consequences of top predator decline?
 - Structural but not functional shifts

Implications

Top predator groundfish decline in the California Current underscores importance of both top-down and bottom-up drivers of marine ecosystem reorganization

Implications

- Reorganization responses contingent on
 - functional redundancy in predator guild

absence of fisheries for forage species

Implications

Restructuring of exploited species relative abundances may influence delivery of other ecosystem services

& services

