

neries and Oceans

Pêches et Océans

Canada

A Regional Climate Model for the British Columbia Continental Shelf

Mike Foreman¹, Diane Masson¹, Wendy Callendar¹, John Morrison¹, Angelica Peña¹, Badal Pal², Bill Merryfield², Isaak Fain¹

¹Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney BC ²Canadian Centre for Climate Modelling and Analysis, Victoria BC

Environnement Canada

heries and Oceans.

Pêches et Océans

Canada

Acknowledgements

•Fisheries and Ocean Canada: • Climate Change Science Initiative Ecosystem Research Initiative • Centre for Ocean Model Development for Application · Environment Canada North American Regional Climate Change Assessment Program (NARCCAP

Environnement Canada

RCM details
Historical evaluation
Forcing fields
Results to-date
Summary & future work

Meris chlorophyll, Sept 11, 2011, courtesy Jim Gower & Erika Young

Depth (m)

Regional Ocean Modeling System (ROMS): Masson & Fain

- Model domain: south of Columbia River to the Alaska border
- Resolution:
 - Horizontal: 3km (236 X 410),
 - Vertical: 30 sigma levels
- Forcing:
 - tides,
 - 3 hourly wind and daily atmospheric forcing (NARR)
 - monthly discharge from 21 main rivers
 - monthly open boundary forcing (SODA)
- Hindcast:
 - *1995-2008*

Over an annual cycle, the model behaves realistically: 1. SSTs show seasonal upwelling & downwelling Sea Surface Temperature (°C)

ROMS (1997-2006)

2. Annual cycle Summer estuarine circulation in Salish Sea

3. Interannual variability: (annual summer SST anomalies)

Future Forcing for the RCM

Anomalies to 1995-2009 forcing & initial fields

- Tides unchanged
- Wind & heat flux thru interpolation from GCMs and/or RCMs
- Oceanic initial conditions & boundary forcing from GCMs
- Freshwater runoff by downscaling precipitation & temperature from RCMs

Projected Patterns of Precipitation Changes

North American Regional Climate Models

-6 RCMs in North American Regional Climate Change Assessment Program (NARCCAP)

- 50 km resolution vs >1° for GCMs
- 1971-2000 & 2041-2070
- IPCC AR4 A2 scenario (business as usual)
- <u>http://www.narccap.ucar.edu</u>

Mean (1971-90) daily precipitation (mm) as computed by top): the CCCma GCM, bottom): the CRCM.

Freshwater Discharges affecting the BC Coast

- Freshwater discharges generate coastal currents which are important to marine ecosystems
- Total drainage basins ≈ 1,315,000 km² but ≈ 20% is ungauged
- Morrison et al (2011) developed technique to estimate ungauged runoff using precipitation, terrain, storage capacity etc. within 22 watersheds
 - Verified vs observations
 - Re-constructed total discharge time series back to 1970 (no trends)
 - Applied to future discharges using RCM precipitation & temperatures

Salish Sea Runoff

Oct

Jan Feb Mar Apr May Jun Jul Aug Sep

- Estimated from NARCCAP CRCM/CGCM3 precipitation & snowcover output
- Except for June-Aug, more runoff in future

Coastal Freshwater Discharge

Heat Flux Forcing

• CRCM grid is too coarse

- coastal regions defined as land
- affects heat flux variables
- CRCM data was downscaled into coastal regions using EOFs
 - patterns generated from SODA re-analysis output
 - Special treatment in Salish Sea
 - coastal data could not be reliably predicted from offshore data
 - assigned average of the values at either end of the straits

For now, just spatially varying anomaly fields; seasonally next

S)

emperature anomaly

Future

Mar

May

Jul

Sep

Nov

Precipitation (kg/m²/s)

Jan

- Precipitation anomaly is greatest in winter, almost non-existent in summer.
- Seasonal cycle dominates anomaly

Initial and Boundary Conditions

- 3D TS anomalies from CGCM3 (no active ocean in CRCM)
 - Future will be warmer and fresher
- anomaly was averaged over constant latitude and then applied to the current initial and boundary conditions
- Greatest anomaly at the surface & at high latitudes
- Max temp anomaly not at surface - deepening of the thermocline

14 year simulation: SSTs

Future forcing has only heat flux & initial/boundary anomalies

• Winds & freshwater discharges unchanged

Temperatures in the Salish Sea

SST anomaly greatest in Georgia Strait, least in areas and times of greatest mixing and times of river influence. Normal seasonal variability is between 8 and 12 degrees at the surface.

- development & preliminary results from BC shelf, ocean-only, RCM
 - ROMS with 3km resolution
 - Future forcing & initial field anomalies computed from NARCCAP CRCM/CGCM fields
 - Incremental build-up of future forcing
 - Results so far with only future initial TS & heat flux fields

×

Meris chlorophyll, Sept 11, 2011, courtesy Jim Gower & Erika Young

Future Work

- Future winds & freshwater discharge runs soon
- Ensemble with other NARCCAP RCM output
- Couple to NPZD & geochemical ecosystem models

Meris chlorophyll, Sept 11, 2011, courtesy Jim Gower & Erika Young

×