Effect of Water-Mass Properties on the Distribution of Pacific Mackerel Scomber japonicus Larvae in the California Current

Ed Weber and Sam McClatchie
U.S. NOAA Southwest Fisheries Science Center

Introduction

- Pacific mackerel are highly managed and fished throughout the world
- The stock that occurs from Alaska to southern Baja California in the northeastern Pacific supported a large fishery in the 1930s-1940s and 1980s, now very low
- Like other coastal pelagic species, abundance fluctuates greatly

Introduction

- Only one current source of fishery-independent data:
- California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has collected environmental data, eggs, and larvae since 1951
- Daily larval production similar to daily-egg-production method but not in the most recent stock assessment (identification of eggs recently possible)

Introduction

CalCOFI

- U.S. and Mexican waters until 1984, core area in the Southern California

Bight since

- Fish from ring nets or bongo nets
- Environmental data from bottle samples and CTD

Objectives

Model probability of capturing Pacific mackerel larvae as a function of environmental variables to:

- Improve future surveys
- "Smooth" patchy catch data for easier Interpretation of habitat occupied
- Quantify trends in the core CalCOFI area and Mexican waters where possible - is the core area representative?

Methods

- Logistic generalized linear models with natural splines (i.e. GAMs)
but constrain number of knots to achieve biologically realistic responses
- Shrinkage to adjust parameter estimates, possibly to zero (model selection)

- Response variable was presence of Pacific mackerel larvae in May through September

Methods

Predictors were temperature, salinity, and oxygen concentration in upper 50 m , depth at which maximum oxygen concentration occurred, mixed-layer depth, an index of geostrophic flow,
day of year that samples were collected and commercial-passenger-fishing-vessel index (stock size) as blocking vars

Results

Partial effects:

- Each predictor at median value of other predictors in the model
- mixed-layer depth and oxygen concentration dropped from the model

Results

Results

Results

Predicted probabilities at median sampling day and stock size

Conclusions

- Mexican waters contain more than half of the habitat during most years.

Core area is broadly representative but exhibits some bias -
Pairing with IMECOCAL data would be better

- Southern California Bight versus Mexican waters temperature versus productivity near surface?
- Recent low catches are not explained by the model - may be very low population size and/or lack of model fit
- Environmental characteristics will be useful for allocating sampling effort to improve future surveys

