A Data-Assimilative, Physical-Biological Model for the Coastal Gulf of Alaska

Jerome Fiechter¹, G. Broquet², A. Moore¹, H. Arango³

¹University of California, Santa Cruz ²CEA-Orme des Merisiers, ³Rutgers University

PICES Meeting, Portland, 28 October 2010

Motivation

"Coastal Ocean Observing and Forecasting Systems"

Data assimilation of physical observations

Do more reliable ocean circulation estimates lead to more reliable ecosystem predictions?

Observation impact calculations

Which observational datasets contribute most to corrections made to physics and biology?

Control vector impact calculations

Which model corrections contribute most to corrections made to physics and biology?

CGOA: Physical and Biological Properties

Physical Variability

- Downwelling-favorable winds (Stabeno et al., 2004)
- AS intrinsic mesoscale variability (Combes and Di Lorenzo, 2007)
- Anticyclonic (Yakutat) eddies (Okkonen et al., 2003)

Biological Variability

- CGOA shelf: highly productive
- Subarctic Gyre: HNLC region (Lam et al., 2006)
- Iron limitation on phytoplankton (Strom et al., 2006)

P.J. Stabeno et al. / Continental Shelf Research 24 (2004) 859-897

CGOA: Coupled Physical-Biological Model

ROMS ocean model

~10 km horizontal resolution42 terrain-following vertical levels

Boundary/initial conditions

Northeast Pacific (NEP) ROMS (Curchitser et al., 2005)

Surface and river forcing

CORE2 (Large and Yeager, 2008) Freshwater line source (Royer, 1982)

Ecosystem model

4-Comp. NPZD (Powell et al., 2006) Iron limitation (Fiechter et al., 2009)

CGOA: Interannual Variability (1998-2002)

Taylor diagrams with respect to SeaWiFS Chlorophyll (No data assimilation)

ď ŝ 1.5 Correlation 6 Standard Deviation Ratio 1.0 0.9 LACK OF 0.95 0.5 VARIAB NPZD+Fe NEMURO+Fe 0.0 0.5 1.0 1.5 0.0 CGOA Basin (>500m depth)

NEMURO+Fe (16 components)

NPZD+Fe (6 components)

CGOA: GAK Line Sea Surface Height (1995-2004)

Strong Constraint Variational Data Assimilation

Model solution depends on:

- Initial condition: x(0)
- Surface forcing: f_b(t)
- Boundary conditions: b_b(t)
- (• Model error if weak constraint)

Strong Constraint Variational Data Assimilation

The objective of the strong constraint incremental 4-dimensional variational (I4DVAR) approach is to find the increments to the initial condition (δx), boundary conditions (ϵ_b), and surface forcing (ϵ_f), that minimize the cost function (J) given by:

$J = 1/2 z^{T}D^{-1}z + 1/2 (Gz-d)^{T}R^{-1}(Gz-d) = J_{b} + J_{o}$

- **D** = Background error covariance matrix
- \mathbf{G} = Tangent linear model sampled by \mathbf{H}
- **R** = Observation error covariance matrix
- $d = y-H(x_b) =$ Innovation vector
- $\mathbf{z} = (\delta \mathbf{x}(0), \epsilon_{b}(t), \epsilon_{f}(t))^{T} = \text{Increments vector}$

I4D-VAR Data Assimilation for CGOA

- ROMS with NPZDFe, 7-day assimilation cycle
- Univariate background error covariances (D)
 - Isotropic, homogeneous correlations (50 km horiz., 30 m vert.)
 - Surface forcing: 300 km for wind stress, 100 km for T/S fluxes
 - Standard deviations based on non-assimilated 5-year run
- Observations sources and standard deviations (R)
 - AVISO 7-Day ADT, Pathfinder 7-Day SST, GLOBEC in situ T/S
 - MDT = 2 cm; T = 0.25 C (sat), 0.1 C (in situ); S = 0.1
- Cases
 - "Free": no data assimilation
 - "Analysis": data assimilation up to and during current cycle
 - "Forecast": data assimilation up to previous cycle

CGOA Sea Surface Height, 1998-2002

Model-Data correlations and RMS differences (ROMS-AVISO) (Assimilated datasets: AVISO ADT, Pathfinder SST, GLOBEC T/S)

Forecast

Free

CGOA Surface Chlorophyll, 1998-2002

Model-Data correlations and RMS differences (NPZDFe-SeaWiFS) (Assimilated datasets: AVISO ADT, Pathfinder SST, GLOBEC T/S)

Free

Forecast

CGOA Ecosystem Response to Mesoscale Variability

CGOA Ecosystem Response to Mesoscale Variability

Timing of Yakutat/Sitka anticyclonic eddies in Northern CGOA

Chl Observations

SSH Analysis

Observation Impact in Northern CGOA

Assimilation of satellite SSH and SST, and in situ T and S

Control Vector Impact in Northern CGOA

Adjustments to initial conditions, surface forcing, and boundaries

Summary (1)

Data assimilation of physical observations

Data assimilation yields more reliable ocean circulation estimates, leading to improved ecosystem predictions

Observation impact calculations

Corrections to physical and biological processes occurs primarily from assimilation of satellite SSH observations

Control vector impact calculations

Correction to physical and biological processes occurs primarily from adjustments to model initial conditions

Summary (2)

Data assimilation of physical observations

Ecosystem forecasting ability on weekly timescales without assimilation of biological observations

Observation impact calculations

Assessment and optimization of ocean observing system design (data redundancy, in situ vs. satellite)

Control vector impact calculations

Errors in ocean circulation initial conditions are primary source of uncertainties in ecosystem model forecasts