# Current Status and Future Perspectives of Marine Renewable Energy Development in Korea

2010. 10. 27.

Keyyong Hong, Seung-Ho Shin & Seok-Won Hong

Maritime and Ocean Engineering Research Institute, KORDI

# **Contents**

- Introduction
- National Roadmap
- Ocean Energy Resources
- Ocean Energy Development
- Vision and Strategy
- **Concluding Remarks**

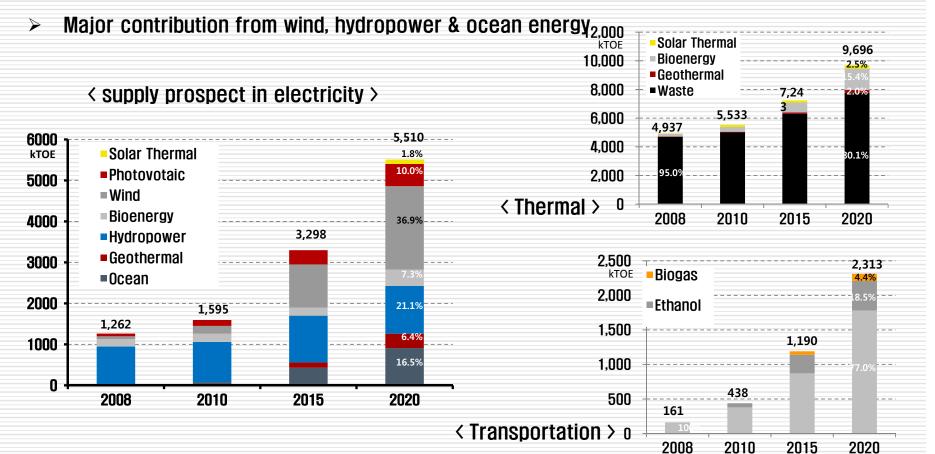
# Introduction

### Ocean Energy Promotion in Korea

- > National Roadmap of Renewable Energy Development
  - ✓ National promotion of "Low Carbon Green Growth"
    - Funding for renewable energy R&D: \$320million (2009)  $\rightarrow$  \$380million (2010)
  - √ 11% of national energy demand supplied by new & renewable energy in 2030
- > Ocean Energy RD&D Program in Korea
  - ✓ MLTM (Ministry of Land, Transport and Maritime Affairs)
    - "Development of Ocean Energy Utilization Technologies"
    - Educational promotion program in ocean energy
  - ✓ MKE (Ministry of Knowledge Economy)
    - Ocean energy R&D in "Development of New & Renewable Energy Technologies"
    - Infra structure establishment program

# Roadmap of Ocean Energy R&D and Supply

#### National Master Plan 2030 of New & Renewable Energy RD&D


> National supply of new & renewable energy in 2030: 11% of national energy demand

(unit: kTOE, %)

| Resources              | 2008         | 2010            | 2015               | 2020             | 2030                | Annual<br>Increase |
|------------------------|--------------|-----------------|--------------------|------------------|---------------------|--------------------|
| Solar Thermal          | 33 (0.5)     | <b>40</b> (0.5) | 63 (0.5)           | 342 (2.0)        | 1,882 (5.7)         | 20.2               |
| Photovotaic            | 59 (0.9)     | 138 (1.8)       | 313 (2.7)          | 552 (3.2)        | 1,364 (4.1)         | 15.3               |
| Wind                   | 106 (1.7)    | 220 (2.9)       | 1,084 (9.2)        | 2,035 (11.6)     | <b>4,155</b> (12.6) | 18.1               |
| Bioenergy              | 518 (8.1)    | 987 (13.0)      | 2,210 (18.8)       | 4,211 (24.0)     | 10,357 (31.4)       | 14.6               |
| Hydropower             | 946 (14.9)   | 972 (12.8)      | <b>1,071</b> (9.1) | 1,165 (6.6)      | 1,447 (4.4)         | 1.9                |
| Geothermal             | 9 (0.1)      | 43 (0.6)        | 280 (2.4)          | <b>544</b> (3.1) | 1,261 (3.8)         | 25.5               |
| Ocean                  | 0 (0.0)      | <b>70</b> (0.9) | 393 (3.3)          | 907 (5.2)        | 1,540 (4.7)         | 49.6               |
| Waste                  | 4,688 (73.7) | 5,097 (67.4)    | 6,316 (53.8)       | 7,764 (44.3)     | 11,021 (33.4)       | 4.0                |
| Total                  | 6,360        | 7,566           | 11,731             | 17,520           | 33,027              | 7.8                |
| National Energy (mTOE) | 247          | 253             | 270                | 287              | 300                 | 0.9                |
| Ratio                  | 2.58%        | 2.98%           | 4.33%              | 6.08%            | 11.0%               |                    |

## Plan of Ocean Energy Supply in Electricity

Electricity supply by renewable energy in 2020(2030): 4.7(7.7)% of national electricity demand



# Ocean Energy Resources in Korea

#### Resources and Sites

Estimated ocean energy resourcesmore than 14,000MW

| Tidal   | Tidal   | Wave              |
|---------|---------|-------------------|
| Range   | Stream  | (Offshore)        |
| 6,500MW | 1,000MW | 6,500MW<br>(50GW) |

- > Feasible capacity
  - ✓ Tidal R.: Approx. 2,400 MW
  - ✓ Tidal S.: Approx. 500 MW
  - ✓ Wave : Approx. 650 MW

(Coastal)

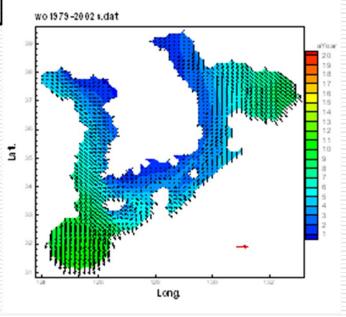


### Resources

# Tidal Range Sites in Korea

| Site       | Installation<br>Capacity<br>(MW) | Annual Output<br>(MWh) | Tonnage of<br>Oil Equivalent<br>(TOE) | CO2<br>Reduction<br>(ton) | Remark |
|------------|----------------------------------|------------------------|---------------------------------------|---------------------------|--------|
| Sihwa      | 254                              | 552,700                | 123,525                               | 232,245                   | 2010   |
| Garolim    | 520                              | 950,532                | 211,969                               | 399,414                   |        |
| Incheon    | 1,440                            | 2,271,000              | 506,433                               | 954,274                   |        |
| Ganghwa    | 810                              | 1,536,000              | 342,528                               | 645,427                   |        |
| Saemangeum | 400                              | 687,000                | 153,201                               | 288,677                   |        |
| Cheonsu    | 720                              | 1,206,000              | 268,938                               | 506,761                   |        |
| Haeju      | 2,300                            | 2,999,000              | 668,777                               | 1,260,180                 |        |
| Total      | 6,444                            | 10,202,232             | 2,275,098                             | 4,286,978                 |        |

### Resources


# Tidal Stream Sites in Korea

| Site     | Installation<br>Capacity<br>(MW) | Annual Output<br>(MWh) | Tonnage of<br>Oil Equivalent<br>(TOE) | CO2<br>Reduction<br>(ton) | Remark |
|----------|----------------------------------|------------------------|---------------------------------------|---------------------------|--------|
| Uldolmok | 50                               | 122,640                | 27,349                                | 51,533                    | 2009   |
| Jangjuk  | 150                              | 367,920                | 82,046                                | 154,600                   |        |
| Maenggol | 250                              | 613,200                | 136,744                               | 257,667                   |        |
| Others   | 550                              | 1,349,040              | 300,836                               | 566,867                   |        |
| Total    | 1,000                            | 2,452,800              | 546,974                               | 1,030,667                 |        |

### Resources

# Wave Sites in Korea

| Region   | Feasible<br>Capacity<br>(MW) | Annual<br>Output<br>(MWh) | Tonnage of<br>Oil Equivalent<br>(TOE) | CO2<br>Reductio<br>n (ton) |
|----------|------------------------------|---------------------------|---------------------------------------|----------------------------|
| Coastal  | 650                          | 1,138,800                 | 253,952                               | 478,522                    |
| Offshore | 5,000                        | 13,140,000                | 2,930,220                             | 5,521,414                  |



# Korean Status of Tidal Energy Development

## Tidal Energy Plant and RD&D in Korea

| Project<br>(Charged by,<br>Funded by)         | Type of<br>Converter     | Structure               | Power<br>Capacity        | Project<br>Period | Remarks                          |
|-----------------------------------------------|--------------------------|-------------------------|--------------------------|-------------------|----------------------------------|
| Shihwa Power Plant<br>(KORDI, K water)        | Horizontal<br>Axial Bulb | Concrete Dam            | 10X<br>25.4MW            | 2004-<br>2010     | Operation in 2011                |
| Uldolmok Pilot Plant<br>(KORDI, MLTM)         | Helical<br>Turbine (VAT) | Jacket                  | 2X500kW                  | 2001-<br>2010     | Completed in 2009                |
| OS Tidal Stream Device<br>(OceanSpace, MKE)   | 2 Blades<br>Propeller    | Floating                | 100kW                    | 2006-<br>2009     | Sea Test in 2009                 |
| Tidal Stream Energy RC<br>(KMU, MKE)          | (Turbine<br>Design)      | (Underwater<br>Design)  | (Resource<br>Assessment) | 2009-<br>2014     | Joint Research<br>Center         |
| Standard Turbine Design<br>S/W (KMU, MKE)     | (HAT/VAT)                | (Performance<br>Charts) | (GUI System)             | 2009-<br>2012     | Based on CFD                     |
| VIVEED<br>(MOERI, MKE)                        | VIV Cylinder             | Pile                    | ?                        | 2009-<br>2012     | VIVACE by Michigan<br>Univ.      |
| In-stream Hydro System<br>(Ecocean Ltd., MKE) | Helical<br>Turbine (HAT) | Jacket                  | 50kW                     | 2010-<br>2012     | Discharge Channel of Power Plant |
| MW Class Tidal Stream Device (HHI, MKE)       | Pitch Control            | ?                       | >500kW                   | 2010-<br>2015     | Sea Test in 2014                 |

### Sihwa Tidal Barrage Power Plant

#### > Site Conditions

- ✓ Mean tidal range : 5.6m
- √ Basin area: 43km2(MSL)
- √ Capacity: 254MW
- ✓ Estimated annual output: 553GWh
- √ One-way flood generation



### Construction History

- ✓ Sea dike of 12.7km completed in 1994
- ✓ Proposed as a counter measure to lake water pollution in 1997
- √ Feasibility study in 2002
- ✓ Plant construction 2004 to 2010



# Uldolmok Tidal Current Pilot Plant

#### > 1MW Pilot Plant

- ✓ Max. current speed: 5.5m/s
- ✓ Helical turbine (2x500kW)
- √ Completion : 2009. 5.









# Korean Status of Wave Energy Development

# Wave Energy RD&D in Korea

| Project<br>(Charged by,<br>Funded by)             | Type of<br>Converter | Structure             | Power<br>Capacity | Project<br>Period      | Remarks                                 |
|---------------------------------------------------|----------------------|-----------------------|-------------------|------------------------|-----------------------------------------|
| Jujeon-A<br>(MOERI, KEPRI/MKE)                    | owc                  | Floating              | 60kW              | 1993-2001              | Pilot Plant in 2001                     |
| Water Reservoir WEC (MOERI, KEPRI/MKE)            | Wave<br>Overtopping  | Caisson               | 250kW             | 2003-2005              | Basic Research                          |
| Yongsoo 500kW OWC<br>(MOERI, MLTM)                | OWC                  | Floating<br>Calsson   | 150W<br>500kW     | 2003-2007<br>2003-2012 | Sea Test in 2006<br>Pilot Plant in 2011 |
| Reef with Vanes<br>(MOERI, MKE)                   | Wave<br>Overtopping  | Monopile<br>or Jacket | 250kW             | 2007-2010              | Optimal Design for<br>Pilot Plant       |
| Variable Liquid Column<br>Oscillator (KEPRI, MKE) | Attenuator           | Floating              | 300kW             | 2010-2011              | Prototype Test in 2011                  |
| Hydraulic Pumping WEC<br>(Taekyung Ind., MKE)     | Point<br>Absorber    | Floating              | 200kW             | 2010-2011              | Prototype Test in 2011                  |
| Pendulum WEC<br>(MOERI, MLTM)                     | Oscillating<br>Surge | Floating              | 300kW             | 2010-2015              | International<br>Collaboration          |

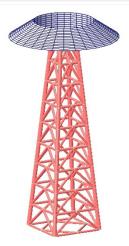
# Floating BBDB(Backward Bent Duct Buoy)

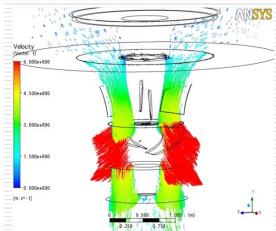
- MOERI/KORDI (2003~2007)
  - ☐ 150W navigational floating lighthouse
  - ☐ Installed at Chaguido in Jeju
  - ☐ Sea test for 2006.6~2007.5
  - □ L: 5.5m, B: 2.75m, D: 2.5m

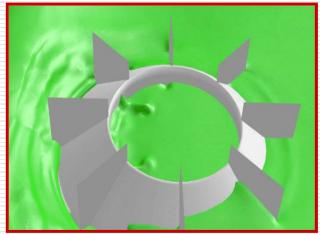







#### **Wave Development**


## Wave Overtopping Reef


- 1<sup>st</sup> Phase (2007~2010)
  - ☐ Wave overtopping type WEC
  - ☐ Simple bottom-fixed supporting structure
  - ☐ 250kW capacity
- 2<sup>nd</sup> Phase (2011~)
  - ☐ Sea test of prototype





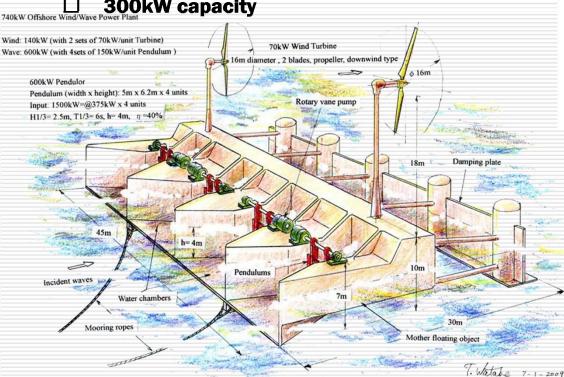


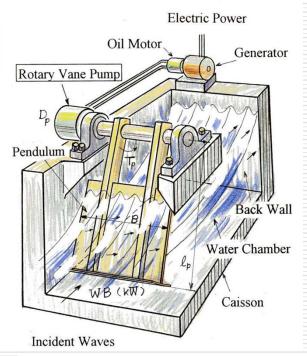





#### **Wave Development**

## Yongsoo 500kW OWC Pilot Plant





#### **Wave Development**

## Wave Activated Floating Pendulum



- **Collaboration with Prof. T. Watabe**
- **Pendulum motion in standing waves**
- Rotary vane pump, pitching motion damper
- 300kW capacity







# National Strategy for Ocean Energy Development

#### Development Strategy in Phases

- Classifying ocean energy technologies into tidal(barrage), tidal current, wave, ocean thermal energy conversion(OTEC) and hybrid system
- > Promotion based on 3 stages (short/mid/long term) of development

Phase 1 (2008~2012)

Building a Technologically

Independent basis

Phase 2 (2013~2020)

Verification / Technology

Advancement

Phase 3 (2021~2030)
High Value-Added
Industrialization

- ✓ Supply Goal: 120kTOE/yr
- ✓ Develop core technologies
- ✓ Development of coastal area
- ✓ Government leading

- ✓ Supply goal: 900kTOE/yr
- ✓ Utilization of technologies
- ✓ Development of open sea
- ✓ Participation of Industry

- ✓ Supply goal: 1,500kTOE/yr
- ✓ Commercial use
- ✓ Develop Hybrid system
- ✓ Industry leading

# **Concluding Remarks**

## Ocean Energy Development in Korea

- ➤ Ocean energy resources of wave, tidal stream and tidal range are richer in the east and Jeju, south, and west coast of Korea, respectively.
- ➤ Current status of ocean energy development in Korea is in RD&D phase except the Sihwa tidal barrage power plant which is expected to start commercial operation in 2010:
  - -Tidal stream: sea test of a vertical axis turbine prototype in 2009
  - -Wave : sea test of a OWC prototype in 2011
  - -Thermal difference: initiation of R&D in 2010

#### > Renewable ocean energy RD&D strategy in Korea

- -Promotion based on 3 stages of development
  - -Phase 1 (2012): government leading, development of core technologies
  - -Phase 2 (2020): participation of industry, sea application of technologies
  - -Phase 3 (2030): industry leading, commercial use of technologies
- -Supply goal of 907kTOE in 2020 which contributes 5.2% of national renewable energy demand\* and 16.5% of national electricity demand provided by renewable energy in 2020 (\*6.08% of national energy demand in 2020)

# Thank you!



