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The subarctic Pacific is isolated from the rest of the 
North Pacific Ocean by the subarctic front

It is the world’s largest ocean basin and an important 
sink for atmospheric CO2

As a consequence of its positive Ekman velocity, 
circulation is largely driven by changes in the overlying 
atmosphere

Unique features of the subarctic Pacific Ocean

Close coupling between the atmosphere, the ocean  and the 
ecosystem of the subarctic Pacific makes it an ideal natural 
laboratory to observe, understand and model seasonal, 
interannual to decadal time scale climate variability and its 
consequences for carbon cycling.



The Aleutian Low Pressure System (ALPS)

Central Hypothesis
Seasonal and interannual shifts in the location and the 
strength of the  ALPS have a major influence on the 
variability of phytoplankton primary and export production 
patterns, and gradients  across the subarctic Pacific Ocean



How important are winds in regulating biological 
production and carbon export in the subarctic Pacific 
Ocean? 

To what extent are they responsible for the large west 
– east gradients in biological production in the 
subarctic Pacific Ocean?

How does their variable strength over seasonal and 
interannual scales impact biological production in the 
western and eastern parts of the subarctic Pacific? 

MAJOR SCIENCE QUESTIONS



Schematic show the seasonal evolution of the mixed layer (DM ), the 
compensation depth Dc and the critical depth (DCR ) in the subarctic Pacific 

Ocean.. DN indicates the depth above which nutrients are exhausted. 
Hypothetical distribution of those areas (dotted) in the time-depth domain 

within which new production is possible.
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Nitrate fields generated 
using MODIS chl and 

MODIS SST

Goes et al. IEEE 1999 
Goes et al., EOS 2005
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Monthly composites of sea surface nitrate concentrations derived from SeaWiFS 
chlorophyll a and AVHRR SST for the year 2000



Comparison of Alligator Hope ship nitrate and MODIS 
Terra satellite derived sea surface nitrate concentrations 

Ship data courtesy Dr. Nojiri and Dr. Wong

r2 = 0.9481
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Sensitivity of nitrate algorithms to errors in satellite estimates 
of Chlorophyll and SST

Combined effects of errors in satellite derived SST and Chl a on 
nitrate estimates at three different temperatures of seawater. 

Goes et al. IEEE 1999



Spatial and temporal distribution of NO3 in the 
North Pacific Ocean

PICES, Special Publication 4 
Compilation by F. Whitney
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Years of narrow
low-nitrate region,
mostly La Niña

Years of wide
low-nitrate region,
Mostly El Niño

X

Surface nitrate concentrations along Line P. Data and 
slide courtesy F. Whitney and W. Crawford, IOS 

Canada 
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Table 1. Comparison of satellite estimatesof newproductionwith sediment trapPOCfluxes(gCm-2 y-1)
______________________________________________________________________________________________

Sediment trap site         Satellite Estimates         Measured             Year    Reference
   (1997)      (1998)    (1999)     Trap Flux

______________________________________________________________________________________________

50o N 145o W (PAPA)            17             19       14          18.1*        1982-1983 Honjo (1997)

48o N 175o  E (NOPACCS)       17             36        24          37.4*        1993-1994 Harada (NOPACCS)

41.5o N 146.5o E (W. PACIFIC)                   31             38       53          54.1**   1983 Noriki & Tsunogai (1986)

34 o N 142o E (JAPAN TRENCH)       20    6         7          12.6*        1989-1990 Handa et al (1997)

33 o N 139o W  (VERTEX)          2   6         8          12.95            1981-1984 Martin & Knauer (1987)

30 o N 175o E (NOPACCS)          3 10         7            6.48            1993-1994 Harada (NOPACCS)
______________________________________________________________________________________

* Referenced to 100 m using formulation of  Martin et al., 1987
  Referenced to 150 m using formulation of  Martin et al., 1987
** Value based on sediment trap data from mid Aug. to mid Sept. 1983
Reference depths chosen to reflect  maximum depths of euphotic column



0 10 20 30 40 50 60 70

1997
1998

1999 2000

2001

Interannual variation in New Production (gC m-2 yr-1) in the North Pacific Ocean

EL-NINO

LA-NINA



Jan 1998

Jan 2000

1998

2000

0 10 20 30 40 50 60 70

New Production (gC m-2 yr-1)



Atmospheric iron dust deposition in the Pacific Ocean. Model 
output data from N. Malhowald. Slide courtesy F. Chai.



East-West gradients in the photosynthetic competency of surface 
phytoplankton from the North Pacific Ocean. Suzuki et al L & O (2002) 



East-West gradients in the photosynthetic competency of surface 
phytoplankton from the North Pacific Ocean. Suzuki et al L & O (2002) 



Vertical profiles of total dissolvable iron around the Kuril Islands. Green symbols 
- Sea of Okhotsk, Red symbols – Oyashio,  Blue symbols - oceanic regions of the 

western Subarctic Pacific. Source Nishioka, J. from PICES special Volume 4 



Location of shipboard data (1976- 
2000). All data collected by 

research vessels from Japan
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Interannual variation of phytoplankton biomass in the western North Pacific Ocean
and relationship to the southern oscillation index
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35
36
37
38
39
40
41
42

0.14 0.16 0.18 0.20
Wind Stress (m sec-1)

SL
FO

I (
o La

t.)

Impact of wind stress on southern limit of the Oyashio 
Front



-6

-3

0

3

6

-4 -2 0 2
SOI Anomaly

A
L

PI

-3

-1

1

3

-4 -2 0 2
SOI Anomaly

N
PI

Relationship between SOI and indices describing the 
Aleutian Low Pressure System



-9
-6
-3
0
3
6

-4 -2 0 2
SOI Anomaly

M
O

I

Relationship between the Monsoonal Index (MOI) and the SOI.  The 
MOI is defined as the difference in SLP between Irkutsk (52.2o N, 

104.2o E), Russia and Nemuro (43.0o N, 145.5o E), Japan



0.14
0.16
0.18
0.20
0.22

1976 1980 1984 1988 1992 1996 2000

W
in

d
St

re
ss

(m
se

c-
1)

-8.0
-5.0
-2.0
1.0
4.0
7.0

1976 1980 1984 1988 1992 1996 2000

M
on

so
on

al
 In

de
x 

(m
b)

(r2 = 0.62 p<0.05)

0.12

0.16

0.20

0.24

-8 -6 -4 -2 0 2 4 6 8

Monsoonal Index (mb)

W
in

d
St

re
ss

(m
se

c-1
)

Interannual variation of winter time wind stress in relation to the MOI



0.14
0.16
0.18
0.20
0.22

1976 1980 1984 1988 1992 1996 2000

W
in

d 
St

re
ss

 (m
 s

ec
-1

)

120
140
160
180
200
220

1976 1980 1984 1988 1992 1996 2000

M
ix

ed
 L

ay
er

 D
ep

th
 (m

)

r2 = 0.92 (p<0.01)

100
120
140
160
180
200
220

0.14 0.16 0.18 0.20
Wind Stress (m sec-1)

M
LD

(m
)

Interannual variation of winter time wind stress and its effect on 
mixed layer depths in the western North Pacific Ocean

Goes et al. 2004



Relationship between the mixed layer depth and mixed layer 
nitrate concentrations in the western North Pacific Ocean
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COASTAL 
KELVIN 
WAVES

KUROSHIO

ALEUTIAN LOW
OYASHIO

WESTERLIES

EL-NINO  WARMING

SCHEMATIC DIAGRAM SHOWING CHANGES IN ATMOSPHERIC 
AND OCEANOGRAPHIC CONDITIONS IN THE NORTH PACIFIC 

OCEAN FOLLOWING AN ENSO EVENT IN THE TROPICS. 
Goes et al. Prog. Oceanogr. 2000
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Coefficients of determination and beta coefficients from 
multiple regression analysis of primary production 
versus predictor variables, sea surface winds and PAR. 
Beta coefficient values in bold are significant at p <0.01 
level, with exception of value shown in * which is 
significant at p <0.02. 

  
   SUB-AREA     R2        Wind β    PAR β 
 

 Western Subarctic Gyre   
  WSGC-1   0.79  -1.1      -0.28 
  WSGC-2   0.70  -1.2      -0.33 

  WSGO    0.62  -0.89      -0.13 
  WSGF       0.25  -0.11        0.40 

 Central Subarctic Pacific 
  CSAC    0.72  -0.76        0.11 
  CSAO-1   0.68  -0.8        0.03 
  CSAO-2   0.62             -0.76        0.03 
  CSAF    0.10  -0.15           0.18 

       Alaskan Gyre 
  ALGC-1   0.89   0.37        0.76 
  ALGC-2   0.83             -0.39        0.56 
  ALGO    0.65  -0.49*        0.35 
  ALGF    0.78  -0.09        0.94 

 
Goes et al. 2004



Summary
El-Nino events in the tropics have a profound impact on 
primary production and export production gradients across 
the subarctic Pacific Ocean through impacts on the location 
and strength of the ALPS and consequently the strength of  
winter monsoonal winds and winter-time convective mixing 

Over large parts of the central and eastern subarctic Pacific, 
phytoplankton photosynthetic competency, and hence 
primary production and carbon export rates are regulated 
by iron, whose availability could be regulated by the 
strength of winter-time winds.

There is an urgent need to examine rates of iron dust 
deposition, its solubility in seawater and bioavailability for 
phytoplankton.
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