How does expanding hypoxia affect the nutrient budget of the subarctic Pacific?

Frank Whitney¹, Steven Bograd², Tsuneo Ono³

- 1 Fisheries and Oceans Canada
- 2 NOAA Southwest Fisheries Science Center
- 3 Fisheries Research Agency, Japan

Hypoxia occurs for humans at high altitude Oceanic hypoxia can occur at shallow depths

I suggest oxygen (next to light) is the strongest habitat delimiter in the N Pacific

Outline:

- 1. Mixed layer nutrient variability
- 2. Subsurface nutrient and oxygen trends
- 3. Summary of findings

With thanks to CalCOFI, HOT, WOCE, Line P and A-line for posting data on-line

1. Mixed Layer Nutrients

Domains:

Kuroshio
Oyashio
Western Subarctic
Bering Sea
Central Subarctic
Eastern Subarctic
Dilute Domain
Subarc./Subtrop.
Boundary
California (CalCOFI)
Hawaiian Ocean T-S

Seasonal nutrient drawdown

Nutrient variability

A striking relationship between NO3 and Si

Apparently, New Production (nitrate based algal growth) cannot be directly equated to export production (diatom growth).

~3 µM NO3 fuels small plankton, any excess supports diatom growth

2. Interior Ocean Trends - Time-Series Data

Ocean Station P as an example of trend analyses

At St P, oxygen is declining and nitrate increasing a ratio of

100-200 m 8.3:1 200-300 m 13:1

North Pacific Trends - Oxygen and Nutrients

Trends at N Pacific Time Series Sites over the past 20-25 years

Station (Btm ML)	02	NO ₃	PO ₄	Si	O/N	N/P	O ₂	NO ₃	PO ₄	Si	O/N
	Bottom of ML to 500 m, mmol m ⁻² y ⁻¹						Btm of ML to 1000 m, mmol m ⁻² y ⁻¹				
Oya (150)	-242	12.1	2.47	293	20.0	4.9	-464	-4.93	1.20	612	38.3
OSP (100)	-346	32.7	3.43	108	10.6	9.5	-497	41.8	4.18	218	11.9
P16 (100)	-360	35.2	2.81	152	10.2	12.5	-516	38.8	3.47	267	13.3
P4 (100)	-410	12.2	0.37	13.4	33.6	33	-567	2.4	0.13	-43.4	236
HG (150)	-314	-4.2	0.42	48.5	n/a	n/a	-419	-28.4	-1.49	108	n/a
C _{in} (50)	-354	24.6	3.19	6.1	14.4	7.7					
C _{off} (100)	-485	61.1	4.76	62.7	7.9	12.8					
HOT (100)	13.2	-24.2	-2.02	-44.2	0.5	12.0	48.5	-42.4	-3.67	-141	n/a

Red denotes the effects of denitrification on trends and ratios

Trends in O₂, NO₃ and Si over the past ~25 y (bottom of the mixed layer to 500 m)

Oxygen-nutrient correlations - subsurface ocean

In general:

- oxygen is being lost from subarctic waters and nutrient levels are increasing
- \bullet nitrate and phosphate losses, compared with O_2 , are less than Redfield ratios due to the faster turnover of N and P compared with C
- subtropics are losing Si, subarctic is gaining
- an unidentified Si source has dramatically increased Si levels in the Oyashio region

Nutrient trend correlations - subsurface ocean

In general:

- Si is increasing in subarctic waters suggesting an enhanced source or reduced sink in the NW Pacific and its marginal seas with effects being seen downstream.
- N and P do not track Redfield ratios in specific regions:
- 1.In coastal waters where denitrification is occuring
 2.In open ocean where data suggests a somewhat faster turnover of P than N

3. Summary:

- \bullet Si vs NO₃ drawdown in the ML suggests nitrate is not directly proportional to export production
- •Scant evidence of declining nutrient supply to the mixed layer
- •But nutrient storage in the ocean interior is increasing. Source?
- •An unidentified source of Si is enriching Oyashio waters, with downstream effects evident at OSP. Okhotsk?
- •Si levels are declining in subtropical waters according to HOT data. Could this be the result of reduced inputs from major rivers (e.g. Changjiang, Columbia, Colorado...)?
- •Time-series data have the internal consistency to allow us to observe changes in the interior waters of the N. Pacific