Towards the integration of biogeochemical and food web models for a comprehensive description of marine ecosystem dynamics

<u>Simone Libralato¹</u>, Cosimo Solidoro¹ & Villy Christensen²

Istituto Nazionale di Oceangrafia e di Geofisica Sperimentale - OGS Dept. Oceanography Trieste, Italy

University of British Columbia Fisheries Centre Vancouver, Canada

ECEM'07 Workshop 26-27 November 2007, Trieste, Italy

Biogeochemical processes and fish dynamics in food web models for end-to-end conceptualisation of marine ecosystems. Theory and use of Ecopath with Ecosim.

Organized by

(Italian National Institute of Oceanography and Geophysics)

Fisheries Centre (University of British Columbia)

Hosted by

EUROCEANS

ICTP (Abdus Salam International Centre for Theoretical Physics)

Supported also by

Ceans

IES-JRC Institute for Environment and Sustainability, Joint Research Center

European Network of Excellence for Ocean Ecosystems Analysis

IMBER (Integrated Marine Biogeochemistry adn Ecosystem Reserch) GLOBEC (Global Ocean Ecosystem Dynamics) LOICZ (Land Ocean Interaction Coastal Zone) ISEM (International Society for Ecological Modelling, European Chapter)

End-to-End: why?

important drivers (stressors) of the marine ecosystems have many effects

Ecosystem

Pollution

A comprehensive perspective of dynamics of marine ecosystems can be achieved by bridging studies regarding biogeochemistry and low trophic levels (plankton) and studies focussing on dynamics of high trophic ones

a (Justic et al.,

ecies

End-to-End

Biogeochemical/trophic relationships/spatial relationships

Global warming

Nutrient input

- depletion of target species (Myers & Worm, 2003);
- increase mortality of non-target species (by-catch);
- decrease in biodiversity (Robert et al., 2000);
- modification of habitats (Jennings & Kaiser, 1998);
- induced changes in the communities (Pauly et al., 1998);
- indirect effects of biological & physical changes (Yodzis, 2001);
- direct & indirect propagation of effects (Springer et al., 2003);

- modification of habitats;
- modification species distribution (Loukos et al., 2003);
- effects on physiology & behaviour (Maury & Lehodey, 2003);
- influences on recruitment (Stenseth et al., 2003);
- impacts on trophic interactions (Hunt et al., 2002);
- direct & indirect propagation of effects;

End-to-End: issue of scales...not only

High TL (HTL) Feeding and fishery interactions (EwE)

Step 0 – Comparison, Reconciliation and 'validation' of state and rate parameters

- 'Functional groups' particularly zoobenthos
- Primary and secondary production and consumption rates
- Predation rates for common groups
- Time scale annual basis?
- Currency issues Carbon biomass vs Wet weight biomass? Conversion

(courtesy Steve Mackinson)

Step 1: 1-way coupling of fundamental links

High TL (HTL) Feeding and fishery interactions (EwE)

'brute force' home made coupling

averaging over time/space

To define averaging scale and what to held constant while integrating other components is to define the links among models (slow/fast dynamics)

Step 2: 2-ways coupling

EwE-GCM-Climate linkages

- Salinity
- Temperature
- Nutrients
- Advection

- Detritus dynamics
- Primary producer dynamics
- First-order consumer dynamics
- Second-order consumer feedback
- Issues to tackle

- Scale
- Time

High TL (HTL) Feeding and fishery interactions (EwE)

Low TL (LTL) Feeding interactions (Biogeochemical model, BGC)

(modified from Steve Mackinson)

Biogeochemical model: TDM

EwE fod web model

3D fully coupled hydrodynamic and biological models

Hydrodynamic model: Anysotropic diffusion and no advective term (residual currents negligible). Anysotropic and space varying diffusivity tensors

Biogeochemical model:

Plankton – oxygen dynamic; DOM and sediment dynamics; Nutrients (CNP) cycles; 12 state variables; 28 parameters.

Horizontal resolution: 300m X 300m Vertical resolution: 1m Time step: 1800 s

(Dejak et al., 1998; [...] Solidoro et al., *Ecol Mod*, 2005)

Ecosystem model:

27 state variables (functional groups); from Phytoplankton to seabirds; 2 nonliving functional groups; 2 fishing activities

One 1.5-way coupling

- Include DIN as a "nonliving group";

phytoplankton (and other PP) become
"predator" of DIN;

-"uptake" of DIN ("consumption" parametrized as in TDM);

- setting "detritus fate" for HIGH TROPHIC LEVELS for representing flows from food web into OM and Nutrient compartments

Frophic level

- annual averages of OM degradation flows estimated from TDM used in the "detritus fate" between OM & nutrient compartments

OD: BGC averaged in space

Biogeochemical 3D-NPZD calibrated model

Yearly average DIN field from TDM (year 2001)

The yearly average field of Dissolved Inorganic Nitrogen (DIN) for a representative year (2001) was obtained from TDM

used as input forcing parameter in the spatiodynamic routine of the Ecopath model (ECOSPACE)

2 major habitats were defined and food web components apply to opportune cells

Ecopath with Ecosim food web

2- results from 2D one-way coupling

One-way coupling implied a time and/or space aggregation

EwE (v5) allows for including biodiversity scale and had enough flexibility for representing biogeochemical processes

Linking available (and tested) models seems the solution: we don't want to go into a big model (3D+hydro+BGC+food web+....)

However, we need to have the complete feedbacks from food web models to the BGC ones too: need for two-way coupling.

COUPLERS? DATA ASSIMILATION?

....EwE (v6) Two way coupling is possible...

In the future!!

ECEM'07 Workshop, 26-27 Nov 2007

Biogeochemical processes and fish dynamics in food web models for end-to-end conceptualisation of marine ecosystems. Theory and use of Ecopath with Ecosim.

Organizers

Villy Christensen (UBC - Fisheries Centre, Canada), Simone Libralato & Cosimo Solidoro (OGS, Italy)

Thanks

Gal, Gideon; Figueiredo, Joana; Pal, Samares; Martins, Irene; Tadesse, Fetahi; Gazi, Nurul; Bulman, Catherine; Schuwirth, Nele; Macias, Diego; More, Nandkishor; Metcalf, Sarah; Belgrano, Andrea;
Giannoulaki, Marianna; Wickramasinghe, Deepthi; Coll Monton, Marta; Skerratt, Jennifer; Vaughan, Louise; Niiranen, Susa; Tsagarakis, Konstantinos; Wainwright, Thomas; Dumont, Isabelle; Janse, Jan; Bevacqua, Daniele; Laganis, Jana; Travers, Morgane; Ciavatta, Stefano; Osojnik Crnivec, Ilija Gasan; Lindegren, Martin; Kwaser, Ahmed; Janjua, Muhammad Yamin; Heymans, Sheila; Santanu, Ray; Srinivasu, Pichika Diwakara Narasimha; Maina, Mbui-Joseph; Tam, Jorge; Murray, Alexander; Scharler, Ursula; Grantham, Hedley; Krivtsov, Vladimir; Vizzini, Salvatrice; Jaiswal, Nitin Kumar; Daskalov, Georgi Mihaylov; Lacroix, Genevieve; Bondavalli, Cristina; Zucchetta, Matteo; Vahideh Torkan; Mackinson, Steven; Martinez Munoz, Marco; Ceccarelli, Riccardo; Le Quesne, Will; Brigolin, Daniele; Ramzi, Azzedine; Natasa Atanasova; Skerjanec, Mateja; Diekmann, Ulf; Santojanni, Alberto; Bahamon, Nixon; Shannon, Lynne; Doyle, R. Santiago.