Marine Protected Areas as a tool for long-term monitoring of marine biota: Separating climate from anthropogenic influence

A. Götz, R. Chalmers, R. Bennett, S. Kerwath and P. Cowley

Elwandle Node, South African Environmental Observation Network (SAEON)

Why Marine Protected Areas (MPAs)?

- Anthropogenic influence and natural variability (including climate change) are superimposed
\rightarrow Large and well established MPAs are mostly free of anthropogenic influence
\rightarrow Measure of natural variability (short-term) and climate change (long-term) as baseline for exploited areas

Why Marine Protected Areas (MPAs)?

- Anthropogenic influence and natural variability (including climate change) are superimposed
\rightarrow Large and well established MPAs are mostly free of anthropogenic influence
\rightarrow Measure of natural variability (short-term) and climate change (long-term) as baseline for exploited areas
- Do MPAs work? (in South Africa)
\rightarrow Movement behavior of species

Red Roman Chrysoblephus laticeps, SPARIDAE

Protogynous Hermaphrodite

Movement beh Dion of Ronnen

Movement behevior of Roman

Spawning season:

 \therefore Fenaales engagein aggressivequelaviola(spavinimgarelated)

Marine reserves: Sizes

Goukamma MPA (40km²)

Sampling design

- Oceanographic survey

Oceanography

Bathymetry

Oceanography

-Temperature
-Turbidity
-Current

Sampling design

- Oceanographic survey
- Density
- Size

Roman density

Roman density male
0-15
$16 \cdot 30$
31.45

46-60
61-75
$76 \cdot 90$
91-105
18 Years after MPA implementation

Target MPAs for baseline

Sample area size: fixed site vs. spatial sampling

- Low variability;
- Difficult to relocate (low visibility);
- Trampling effects (mortality, habitat destruction, behavior; Vos et al. 2000);
- Chance disturbances (pollution, sedimentation, wave action; Nowlis and Friedlander 2004);
- Lack of representativity (habitat complexity, benthos patchiness);
- Non-randomness (more biased\&weaker statistical methods; Vos et al. 2000);
- Pseudo-replication (benthos and resident fish).

Randomly stratified approach

Test of suitability of methods

Fish community:

- Controlled angling
- UW counts

UW counts:

Two years of

 biannual fieldtrips Survey of same site using transects and point counts

Indices

Test of additional methods

- Observer bias
- Noise over bias approach (Vos et al. 2000)
=> digital UW footage: observer bias free \& noise reduced

Digital UW footage

Baited Remote Underwater Video (BRUV)

Remotely
Operated Vehicle (ROV)

Benthic

 invertebrates (intertidal and subtidal)Public participation (test of observers)

Develop a long-term monitoring strategy for South African near-shore reef biota
\Rightarrow Standardized protocols with tested \& costeffective methods
\Rightarrow Baseline sites in all biogeographic zones
\Rightarrow Network of sites for resource monitoring in exploited areas

