

Variability in environmental factors affecting the recruitment of fish species in the North E ast A tlantic

Ralf van Hal Wagenigen IMARES Catherine L. Scott University of Liverpool Christine Röckmann Wageningen IMARES

Incorporating extrinsic drivers into fisheries management IN E X FIS H

- Recruitment at age 0 or 1
- Spatially explicit drivers
- General additive modelling (GAM)
 - Model selection by AIC
- Comparing with SR-relationships
 - Ricker and Beverton & Holt

Dataset used in the analysis

- Recruitment and SSB from ICES Stock assessments
- NAO winter index (CGD, Hurrell)
- North Sea:
 - Bottom temperature and salinity ECOSMO model (Schrum & Alekseeva, RECLAIM)
- ICES area VIa:
 - SST satellite images (ICOADS)
 - Plankton data from CPR (SAHFOS)

Recruitment hypotheses

Species and areas

Data used in the analysis, plaice example

Stock vs. Recruitment of plaice

Log(Recruitment)~ s(NAO_1) +s(min_temp_spawning) + temp_feeding (neg.)

Comparison with SR-relationships for North Sea

plaice

Results for North Sea Herring

Final model:

Recruitment ~ s(SSB) + s(salinity spawning area)

Results for cod in area VIa

Final model:

Ln(Recruitment) ~ SSB (pos.) +*C. finmarchicus* (neg.) + s(SST in April)

Comparison with SR-relationships

North Sea herring

Area VIa cod

	R ²
Linear	0.36
Bev & Holt +drivers	0.38
GAM	0.40

Discussion on the use of GAM

- GAM only useful for predictions within the boundaries of the data
- GAM will not obey by definition the assumptions of some SR-curves
 - The curve should pass through the origin.
 - The curve should not cross the zero-recruitment axis at nonzero stock size.
 - Recruitment must exceed parental stock over some part of the range of the stock values
 - Recruitment should vary smoothly with stock size.
- No Relationship with SSB
 - Stocks with a limited range of SSB

Conclusions

GAM models could improve the prediction of recruitment

Incorporation of extrinsic drivers improves predictions

Spatially and temporally resolved data are necessary to find biological meaningful relationships

Next steps

- Validation of the models with new data
- Incorporation of the results into a population dynamics model
- Evaluate this model with various fishing scenarios and climate scenarios

Acknowledgements

INEXFISH partners,

 Chris Frid (Uni of Liverpool), Gerjan Piet (IMARES), Sture Hanson (Uni of Stockholm), Mikael van Deurs, Per Dolmer (DTU-aqua), Piotr Margonski, Ryszard Grzebielec (MIR), Fatima Borges, Hugo Mendes (IPIMAR), Gudmundur J. Oskarsson, Stefan A. Ragnarsson (MRI), Chris Birdges (Uni. of Dusseldorf), Michele de Florio (Uni of Bari)

RECLAIM, especially Corinna Schrum

SAHFOS

