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§1. Chum salmon

Urawa （2000）Migration route of Japanese salmon. National Salmon Resources Center 
(NASREC) Newsletter No.5pp.3-9, in Japanese



Yatsu, and Kaeriyama. (2005). Deep-Sea Research II 52: 727-737

Kaeriyama et al.(2007) North Pacifi c Anadromous Fish Commission Technical Report No. 7: 52–55,





1) Salmon Bio-energetic model 
+ lower-trophic model (NEMURO)



Rudstum(1988)
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CMAX: maximum consumption rate
(CMAX= ac･Wbc).

ρ: prey density dependence 
function ( 0<ρ< 1).

fc(T): temperature dependence
function (0< fc(T) < 1).



-Forcing data set -
Ummm, 

delicious !!

(Krill or Jelly fish)

NEMURO  developed by PICES Model Task Team 
(North pacific Ecosystem Model Used for Regional Oceanography)

The forcing data set (SST,Salinity and prey zooplankton 
density ) are obtained from the result of NEMURO 
embedded in 3-D physical model (Aita et al.,2006), along 
the migration route of chum salmon.

Referring to Kaeriyama et 
al.(2004), we decided to use 
only ZP as prey zooplankton.

(copepod)



Kamezawa,Y., T,Azumaya, T.Nagasawa and M. J. Kishi(2007): Bull. Japan. Soc.Fish.Oceanogr., 
71,87-96. North Pacific Anadromous Fish Commission Technical Report No. 7: 95–98

(drawn from Urawa,2000)
In summer  :  Feeding & Growth ,  In winter : Wintering.
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Result 2/2

(Time-dependent features of  body size in the Bering Sea in summer from 1971 to 1999.)



Reproduced body size of the 1972 year class is larger 
than that of 1991 year class. This result shows a good 
agreement with the observational in the Bering Sea.

The prey density, especially in the eastern North Pacific, 
gives larger influence to the change of wet weight rather 
than the SST does. Moreover, our model reproduces the 
trend of observations in l971-1999 well.

This suggests that body size reduction of Japanese 
chum salmon in 1990s was partly affected by the prey 
density.

Summary of the model



What will happen by global warming on 
salmon migration?  

“Poikilotherm” No adaptation / dissilency
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Growth, Feeding : 8～12℃
1st year in the Okhotsk Sea    (July ～ October)

Wintering: 4～6 ℃
1st year in Northwestern Pacific (November ～ June)

Growth, Feeding : 8～12℃
2nd year in the Bering Sea (July ～ October)

Wintering: 4～6 ℃
2nd year in the Gulf of Alaska (November ～ June)











§2. Common squid



Fisheries of common squid:◇：Japan，●：Japan+Korea▲：Korea上の矢印線は、
（Sakurai et al，2000）

*104 t



1988

1987 1990

２月の海面水温のアノマリー（過去３０年間平均からの高温，低温差）

1985

Regimshift

(Noto & Yasuda, 1999)

SST anomaly in February



Juvenile CPUE（1/1000m3）and catch（kg/day：May-Dec)-
Hyogo Pref.
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Black circle: release point, colored circle: caught  （Kidokoro et al., 2004）
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Egg is hatched out above thermocline，and juvenile can be 
survived 18-23℃（especially 19.5-23℃）swims up to the 
surface water within a day
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スルメイカの産卵可能海域は，100-500mの陸棚・陸棚斜面という制限要因がある



Changes of inferred spawning areas of Todarodes pacificus based on the Global 
Warming Scenario by the Earth Simulation System (FRCGC, Japan)

2005 2050 2099
October

November

December

Green cell: land area, orange cell: inferred spawning area, red cell: disappeared spawning area with global warming







§3. Walleye pollock and Pacific co

Pacific cod
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General conclusion



My (not “our”)conclusion

Do you really believe that you can predict the 
future status of higher trophic ecosystem?

Who could predict noctiluca bloom in Arabian Sea?

Who could predict multiplication of giant jelly in the 
Sea of Japan?

Who could predict coccolith bloom in Bering Sea?
Even lower trophic!



It is not difficult to predict 
“DISAPPEAR”

It is difficult / impossible to predict 
“APPEAR” Thank you

ありがとう


